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Resume. - On diveloppe une approche thiorique pour diterminer la forme quasi sphirique des 
visicules phospholipidiques. La mithode est ginirale. dans le sens qu’elle ne dipend pas d’une 
quelconque restriction de syniitrie. On suppose que la forme B I’iquilihre correspond au 
minimum d’inergie de tension de courbure de la membrane pour une valeur constante de la 
surface de la membrane, du volume des visicules et de la diffirence de surface des doubles 
feuillets phospholipidiques de la membrane. L’inergie de courbure et les contraintes sont 
diveloppies B I’ordre 4 en terme de la diviation de la forme par rapport B une sphPre. Tous les 
termes jusqu’au troisi&me ordre sont inclus dans les calculs suivants. La deviation est exprimie en 
siries d’harmoniques sphiriques. On montre que la stabilitt des solutions peut etre testie en 
regardant les valeurs propres de la matrice des dirivdes secondes de l’inergie de courbure par 
rapport aux amplitudes indipendantes du diveloppement en harmoniques sphiriques. La 
mithode est appliquie aux calculs des formes B symitrie axiale ou non, et les influences des 
diffirentes approximations sont 6tudiies. On montre que pour des variations de la diffirence 
dans I’aire des feuillets, on peut transformer de mani6re continue une forme stable aplatie en une 
forme stable allongie et, riciproquement. 

Abstract. - A theoretical approach to determine nearly spherical shapes of phospholipid vesicles 
is developed. The method is general in the sense that it does not depend on any symmetry 
restrictions. Equilibrium shapes are assumed to correspond to the minimum of the membrane 
bending elastic energy at constant values of the membrane area, the vesicle volume and the 
difference of areas of the two leaflets of the phospholipid hilayer. The bending energy and the 
constraints are expanded up to fourth order terms in the deviation from a sphere, and in the 
subsequent calculations all terms up to the third order are included. The deviation is expressed as 
a series of spherical harmonics. It is shown that the stability of the solutions can he tested by 
inspecting the eigenvalues of the matrix of second derivatives of the bending energy with respect 
to independent amplitudes of spherical harmonics expansion. The method is applied to the 
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calculation of axisymmetric and nonaxisymmetric shapes, and the influences of different 
approximations are discussed. It is shown that at variations of the leaflet area difference stahie 
oblate and stable prolate shapes are transformed into each other in a continuous manner. 

1. Introduction. 

Phospholipid vesicles in flaccid conditions, i.e. when their volume is smaller than the volume 
of a sphere of the same membrane area, are known to exhibit a broad variety of different 
shapes. Several phenomena connected with shape transformations of vesicles as well as 
corresponding experimental and theoretical investigations were recently reviewed by 
Lipowsky [ 11. 

In general, theoretical concepts on vesicle shapes are based on the assumption that 
equilibrium states correspond to the minimum of the membrane bending energy. Introducing 
the spontaneous curvature Helfrich [2] formulated an expression for the bending energy 
which has been widely used to determine equilibrium shapes of vesicles at given values of the 
vesicle volume and the membrane area [ 3 ,  41. Svetina and TekS [S, 61 worked out a slightly 
different concept of calculating vesicle shapes. In this concept the constraint of constant 
membrane area of the vesicle was extended in such a way that it was applied to both leaflets of 
the phospholipid bilayer, i.e. it was assumed that under equilibrium conditions the areas of 
both monolayers are fixed. Since this theoretical concept can explain shape changes in 
accordance with the bilayer couple hypothesis 171 it is called the bilayer couple model. 

Both models, the spontaneous curvature concept as well as the bilaycr couple model, have 
been widely studied by applying an Euler-Lagrange ansatz to the resulting variational 
problem [2-61. Recently, the results of both approaches were compared on the basis of a 
detailed investigation of the corresponding phase diagrams [8]. Up to now, the computations 
using this ansatz have been restricted to axisymmetric shapes, and a complete stability 
analysis of the resulting shapes has not been performed. 

The investigation of the bilayer couple model by the use of an Euler-Lagrange ansatz 
revealed that the axisymmetric shapes obtained can be assigned to different classes [9]. A 
given class comprises all shapes of the same symmetry which can be continuously transformed 
into each other changing the model parameters. The axisymmetric shapes have been 
characterized in more detail for the sake of some specific studies : the bilaycr couple 
interpretation of shape transformations of red blood cells [6], the investigation of cell polarity 
[9, 101, and the interpretation of temperature induced shape transformations of giant vesicles 
[ I  11. In the latter work as well as in [12] a good agreement of experimental and theoretical 
results was found. 

In order to extend the theoretical investigation by including also nonaxisymmetric shapes, 
in the present paper another method is studied which is based on a Taylor expansion of the 
membrane bending energy with respect to the deviation froin the spherical shape. 
Subsequently, the deviation is expressed as a series of spherical harmonics. Using a Ritz 
procedure (cf. [16]) those amplitudes of spherical harmonics are calculated which minimize 
the bending energy taking into account the various constraints. A necessary condition to 
obtain equilibrium states is that the first derivatives of the corresponding functional with 
respect to amplitudes of spherical harmonics vanish. In addition, the method enables the 
stability analysis of a given solution by deciding whether the bending energy has a minimum 
with respect to variations of the amplitudes. For that one has to inspect the eigenvalues of the 
matrix of second derivatives of the bending energy with respect to independent amplitudes. A 
shape is stable if all eigenvalues of this matrix are positive. 
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Due to the expansion in terms of the displacement from a sphere the method requires to 
restrict the calculations to nearly spherical shapes. Such a Taylor expansion has been worked 
out by Helfrich [131 up to the second order terms, and the results have been widely used in the 
analysis of thermal fluctuations of vesicle shapes [14, 151. In the present work the bending 
energy as well as the constraints are expanded up to the fourth order terms. Into the 
subsequent computations all terms of the deviation up to the third order are included. Third 
order calculations have been carried out before using the spontaneous curvature concept 
[17, 181. However, in these works only special questions were considered by applying the 
general equations obtained. Third order terms have been analysed also in [I91 hut without 
calculation of equilibrium shapes since the volume was assumed to change due to external 
pressure changes. Hitherto, the bilayer couple model has not been analysed in this way. 
Various nonaxisymmetric vesicle shapes were discussed in 117, 191 as well as in [20, 211. 
However, a systematic and explicit determination of equilibrium shapes of any symmetry 
including a complete analysis of their stability is still lacking. 

In the following, vesicle shapes will be considered within the bilayer couple model. 
Accordingly, for the membrane bending energy the expression given in [6] is used. 
Equilibrium shapes are calculated by minimizing the bending energy at constant areas of both 
leaflets of the phospholipid bilayer or, more conveniently, at a constant area of the inner 
monolayer (A) and at a constant difference between the areas of the two layers 
(AA). Furthermore, the volume V of the vesicle is assumed to be constant because water 
transport through phospholipid membranes is known to be very slow during the relevant 
times of observing equilibrium shapes. 

The paper is organized as follows. In sections 2-4 the general equations for the calculation 
of nearly spherical shapes of any symmetry are derived. In section 5 a method for the stability 
analysis is developed. In section 6 the general model equations are specified for axisymmetric 
shapes. The results of this special case are compared with those of an Euler-Lagrange ansatz 
in section 7. In section 8 the effects of different approximations of the present method are 
studied. Subsequently, the model is applied in its general form and nonaxisymmetric shapes 
are calculated including the analysis of their stability (Sect. 9). In the numerical computations 
the maximal P - value used in the series of spherical harmonics Ytm is so high that the 
inclusion of functions Yp, with higher P would not significantly change the results. Concerning 
the determination of stable equilibrium shapes the method is, therefore, more general than 
those used in previous works 117, 181 where only P = 2 deformations of the sphere have been 
considered. 

2. The model. 

Equilibrium shapes of phospholipid vesicles are assumed to he characterized by the minimal 
value of the membrane bending energy 

where k ,  is the membrane bending elastic constant, c, and c2 are the two principal curvatures, 
and integration is performed over the closed surface of the inner monolayer. The shapes have 
to fulfil the conditions 

A = A ,  
v = v, 

AA = A A o  
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i.e. the membrane area (A) ,  cell volume ( V )  and the difference bctween the areas of the two 
membrane leaflets (AA) are considered to be fixed at values A,, V,, and AA,. respectively. 
The difference in leaflet areas is given by the formula 

AA = h J^ (c, + c,) dA ( 5 )  

where h is the distance between the two leaflets (cf. [221). In equation ( 5 )  a second order term 
with respect to h is neglected since the distance between the two monolayers is very small in 
the relevant length scale. 

The closed surface representing the vesicle shape can be described by F = ?(+, p )  using 
the spherical angles tt and p as independent coordinates. F is the distance between the origin 
of the coordinate system and the surface of the vesicle. It must be required that 
F = F(tt, p )  is a unique function of 8 and p. 

For the following derivations dirriciisionlcss quantities are introduced. The bending energy 
(W,)  and the constraints (A,  V and AA) are normalized relative to those values they would 
attain if, at the given surface area A,, the shape were spherical with radius R ,  = (Ad4 T)”’. 
This normalization procedure is the same as used in [6].  The dimensionless model quantities 
are identified by small letters wb, a, v and Aa, respectively. Correspondingly, the shape 
function F ( 0 ,  p) has to be normalized relative to R ,  which yields the dimensionless shape 
function r ( 8 ,  p )  = F(tt, p ) / R s .  Obviously, conditions (2)-(4) then read in a dimensionless 
form as follows : a = a, = 1, 2’ = D, and Aa = Aa,, respectively. 

Taking into account the relations between Cartesian and spherical coordinates as well as 
the definitions of the coefficients of the first and the second fundamental form of the surface it 
is possible to express the bending energy, the membrane area, the cell volume as well as the 
difference between the areas of the two membrane leaflets in terms of r ,  0 and 
p. The resulting equations read in a dimensionless form : 

Integration is performed over the full solid angle d R  = sin 19 d 8  d p .  The differential 
operators V and A are adopted, respectively, as 
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The function r = r (  6, q) can be written as the sum of a certain constant ib and a function 

r, is the radius of a sphere which is called the corresponding sphere. Consequently, 
u ( 8 ,  9) is the deviation from this sphere. For nearly spherical shapes the radius of the 
corresponding sphere r, can always be chosen in such a way that for any values of 
8 and 9 the displacemcnt U ( + ,  9) is much smaller than I-@ Using relation (12) in 
equations (6-9) and expanding the resulting expressions up to the fourth order in the relative 
displacement u/rn one obtains : 

Wb = 1 +- 1 [ - 4 r i A u  + 4 r ~ u A u + r ~ ( d u ) ’ + 2 r ~ [ V ~ ] ’ -  
16 wr: 

- 3 r, u2Au - 2 r,u(Au)’ - 4 r, u[VuI2  + 2 r, V u .  V([Vu]’) + 
+ { 4 u3  Au + 3 ~ ’ ( A u ) ’  + 6 u2[VuI2  ~ 6 u Vu . V ( [ V u  1’) - 

2 
1 
2 

~ - ( A u ) ~ [ V U ] ’  - Au VU . V ( [ V U ] ~ )  - 

2 1  1 
4 nr ,  2 a = r,  + -* [2 r,’ U + ~ ; u *  + - r@u]2 + {- [ V u l 4 ) ]  dQ 

u = r , + - C  3 3  [ r ~ u i r o r r 2 + - u 3 ] d R  1 
4 n  3 

3 1 
2 1 [2 .:U - ro Au + r ; [Vu] ’ -  r, u[Vu]’+ -7, V u .  V([Vu]*)  + Aa = ro + -3 

8 r r ,  
+ { U ~ [ V U ~ ~ - ~ V U . V ( [ V ~ ] ’ ) -  [Vu]‘)] d o  

The further treatment of fourth order terms (marked by the { ... }-brackets) turned out to be a 
very complex and extensive procedure. Therefore, the present model is restricted to terms up 
to the third order in U ,  i.e. all fourth order terms are neglected. Note that in the following any 
quotation of equations (13-16) refers to the third order versions of these equations not taking 
into account the terms enclosed by curved brackets. 

The integrals needed in equations (13.16) can he calculated by expressing the displacement 
U as a series of spherical harmonics : 

u ( 8 ,  9 )  = UP, YP,,(8,  9). 117) 

The inclusion of the term U,, Y, ,  permits to fix the radius ro of the corresponding sphere 
without loosing the dependence of the solutions on a certain constant part of r ( 8 ,  9). Here, 
T, is chosen in such a way that the corresponding sphere has the same volume as the vesicle, 
i.e. in normalized quantities r, = ( u , ) ” ~ .  

e - o m = - e  

Since the displacement U is real the amplitudes have to obey the relation 

UPm = (- I ) m  U P . - r n .  (18) 

The spherical harmonics Yp, (8, 9) are expressed by the associated Legendre polynomials 
Pp,(cos 6) as 

2 P + 1  ( P - n ? ) !  

(P + m ) !  
Pp, (cos 8) eimP 
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After introducing expansion (17) into equations (13-16) the corresponding integrals over 
the closed surface may be calculated. Basic properties of spherical harmonics, types of 
integrals as well as details of the calculations are given in the Appendix. As a final result the 
expressions for the bending energy, membrane area, volume and difference between areas of 
the two membrane leaflets, respectively, attain the following form 

Wh = 1 + 7  f f (f + I )  (f (f + I )  - 2 )  up4 

where 

Coefficients A ( f ,  f 2  f ,  ; m m,j are given by equation (A2) in the Appendix. Summations in 
equations (20-25) have to be performed under the following conditions : 

Obviously, the relations (27) and (28) include the conditions 0 G f ,  (i = 1, 2, 3) whereas there 
is no upper limit for the f , .  

3. Position of the coordinate system. 

There is no interest in calculating the same equilibrium shape in different reference frames 
where the various states can be transformed into each other by translation or rotation. 
Therefore, one has to choose a suitable position for the origin of the coordinate system as well 
as for the directions of the coordinate axes. This is done here by introducing the following 
additional requirements : 

(i) The mass centre of the vesicle (TnZ, ym, F m )  is the origin of the coordinate system. 
(ii) The z-axis (79 = 0)  of the Cartesian coordinate system has the same direction as the 

surface normal at the point r (0 ,  p). 
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(iii) The x-axis ( 4  = r / 2 ,  p = 0) is chosen in such a way that for p = 0 the function 

The first requirement yields three conditions which have to be satisfied while minimizing 
r ( r / 2 ,  p) has an extremum with respect to varying values of p. 

the bending energy : 

x, = - (ro + u ) ~  sin 4 cos rp dR = 0 (29) 

Y m  = 16 (ro +  sin 4 sin rp d R  = 0 

Equations (29-31) were transformed into a dimensionless form by the above mentioned 
normalization procedure. Correspondingly, the dimensionless coordinates of the mass centre 
of the vesicle are defined as follows : x, = f J R , ,  y ,  = F,/Rs and z ,  = z,,/R,. Taking into 
account only terms up to the third order in the deviation U the various integrals in 
equations (29-3 1) are calculated after the introduction of spherical harmonics (Eq. (17)). The 
results are also given in the Appendix (Eqs. (A18-A27)). 

The second requirement is identical with the condition 

- 

which must be fulfilled at the surface point r ( 4  = 0, 9) for any value of p. After introducing 
the expansion (17) as well as the definition (19) the derivatives of the associated Legendre 
polynomials with respect to 8 have to be calculated for 4 = 0. It can easily be proved that 
these derivatives assume the following values : 

if m = - 1  1 c ;  
L 

'3Pf,(COS 4 )  e ( e +  1 )  . if m = l  a-s (33)  

i 0  else 

Using this property together with relation (18) and considering the real and the imaginary 
part of the resulting expression separately one obtains from equation (32) the following two 
constraints : 

The third requirement yields the condition 

- - au(4 ,  q ,  j 9 = ; , q = o  = O .  (36) ar(4, 3 9  rp) I d  = ;, ~ = 0 arp 

Using equations (17) and (19) and taking into account the relations between Pf,,, and 
Pp, , as well as equation (18) one obtains the constraint : 
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4. Calcutation of equilibrium shapes. 

The shape of a vesicle can be determined by minimizing the following function containing the 
bcnding energy and all constraints in a dimensionless form 

g = w’b + .\,(a ~ 1 )  + A r ( U  - D o )  + A,(Aa - Aa,) + 
+ A x  X, + A y  y ,  + A, z , ~  + A s ,  S1 + A, S ,  + AS3 ~3 . ( 3 8 )  

The A’s are Lagrange multipliers associated with the nine quantities which are fixed by the 
constraints. Replacing M+,, a,  U ,  Aa, x,,,, y,, i,, s,, S,  and S, in equation (38) by the 
corresponding expressions given in equations (20-25), (29-3 1) (together with (AI 8-A27), cf. 
Appendix, and neglecting the u4-tem), (34), (35 )  and (37), g may be written as a function of 
the amplitudes Utm as well as of the nine Lagrange multipliers. According to Ritz’ procedure, 
at equilibrium partial derivatives of g with respect to these unknown variables must vanish. 
This yields a system of equations from which the amplitudes and the values of Lagrange 
multipliers can be obtained. Since this equation system is nonlinear its solutions can not be 
calculated explicitely but may be obtained numerically, for example, by the use of Newton’s 
method. 

For numerical computations it is more convenient to use real amplitudes of spherical 
harmonics instead of the complex ones. This is possible because all quantities necessary to 
determine the equilibrium shapes are real. In this work real amplitudes X i n 3  and 
Xi, are introduced by the following substitution : 

Taking into account equation (18) one obtains for m # 0 the following relations between the 
real amplitudes : 

X L m  = (- l),X[, (40) 
xi, - m  = - (-- l)”’X;, . (41) 

It can easily be proved that using equation (39) all expressions containing complex amplitudes 
Uy, may be rewritten in such a way that only real amplitudes appear and the imaginary parts 
of all expressions vanish. 

After all, the method to describe nearly spherical vesicle shapes is complete. Numerical 
computations require a restriction to a finite number of spherical harmonics which means that 
the infinite series of spherical harmonics has to be cut at an appropriately chosen maximal 
value f,,,. The numerical problem is then to determine the values of (f,,, + 1)’ unknown 
amplitudes together with nine unknown Lagrange multipliers. 

5. Stability analysis. 

A shape obtained as described above is stable if the extremum of the bending energy is a 
minimum with respect to variations of the amplitudes of spherical harmonics. Since this 
extremum was calculated in the presence of constraints it is necessary to distinguish between 
dependent and independent variables. From the whole set of amplitudes the dependent ones 
can be chosen arbitrarily but taking into account that their number is fixed by the number of 



N' 5 VESICLE SHAPES AND THEIR STABILITY 1089 

constraints, and that the matrix of derivatives of the constraints with respect to dependent 
variables must be regular. Let n denote the total number of amplitudes and m (0 G m c n ) the 
number of dependent ones. Then independent and dependent amplitudes may be represented 
by the components x, ( i  = 1, .._, n - m ) and yk ( k  = 1, ..., m ) of vectors x and y, respec- 
tively. The functional dependence of the bending energy on amplitudes shall be denoted by 
f(x,  y). Taking into consideration the relations given by the constraints one may write 

f *(XI = f fx ,  Y(X)). (42) 

An extremum o f f *  is a minimum if all eigenvalues of the matrix of second derivatives of 
f * with respect to independent variables, a'f */ax, ax, (i, j = 1, ..., n - m), are positive. The 
elements of this matrix may he determined in the following way. First and second derivatives 
of f * with respect to independent variables x ,  and x, (i, j = 1, .__, n - m) read 

-.-+-.- a2f 
ay

, ) + &. (44) 
+ L = l  f ayk a2f axi ayk axj ayk axj axi 

First and second derivatives of dependent variables with respect to independent ones are still 
unknown since the nonlinearities of the constraints (Eqs. (21-23) and (29-31)) do not allow an 
explicit formulation of the dependences yk (x i ) .  Their values can be obtained, however, by 
implicit differentiation of the equations of the constraints with respect to independent 
variables. From that one obtains in a first step for each xi (i = 1, ..., n - m) a system of linear 
equations to determine the values of ayklaxi ( k  = 1, ..., m). Repeated implicit differentiation 
of the corresponding equations yields systems of linear equations for the calculation of the 
values of all derivatives a2Yk/axj axj which then may be used in equation (44). A vesicle shape 
is stable if the extremum of f* is a minimum, i.e. if all eigenvalues of the matrix 
azf*iaxj axj are positive. 

6. Specifieation of the model for the axisymmetric case. 

The numerical treatment of the general method developed above is rather extensive and by 
far not trivial. Corresponding computations are much simpler for axisymmetric shapes than 
for shapes of arbitrary symmetry. The main reason is that axisymmetric shapes may be 
characterized by a relatively low number of amplitudes of spherical harmonics. If the maximal 
I?-value used in the computations is denoted by I?,,,, one has to calculate in the general case 
(P,,, + 1)' unknown amplitudes whereas for axisymmetric shapes this number is reduced to 
I?,,, + 1. Since in the axisymmetric case the coordinate system is fixed by preventing its shift 
along the symmetry axis the number of corresponding constraints is also reduced. Therefore, 
the restriction to axisymmetric vesicle shapes provides a relatively simple opportunity to study 
the method described above. An even more compelling argument for testing this model first 
by considering only axisymmetric shapes is that in this case the results can be compared with 
those obtained before by solving a system of Euler differential equations [6, 81. The latter 
method permits to calculate axisymmetric vesicle shapes without the approximations used by 
the former approach. Consequently, it is possible to evaluate the effects of the approximations 
of the method presented here and, therefore, its validity by comparing both methods in the 
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special case of axisymmetric shapes. In this section the general expressions derived above are 
written for this special case. 

For axisymmetric shapes the deviation U from the corresponding sphere depends only on 
the azimuthal angle 4 and can be expressed by the Legendre polynomials Ppfcos 4 )  as 

P,,, 

P L O  

u ( a )  = XpPp(c0s 4) (45) 

where the notation Xp has been introduced for the amplitudes Xio defined in (39). Amplitudes 
describing nonaxisymmetric features of the vesicle shapes must vanish : 

up, = 0 if m f 0 .  (46) 

The following expressions used in equations (20-23) read in the axisymmetric case (cf 
Eqs. (24) and ( 2 5 ) )  : 

147) 

The C (PI  f ,  f ,  ; 0 0) are Clebsch-Gordan coefficients (cf. [23]).  For the summation indices 
condition (26) must hold, whereas the relations (27) and (28) yield the condition 

0 G P, s f,,, (i = 1, 2,  3 ) .  (50) 

The requirement that the mass centre of an axisymmetric vesicle is the origin of the 
coordinate system is satisfied if z,, defined in equation (31) becomes zero. Introducing the 
amplitudes X p  the integrals needed in equation (31) (cf. (A20), (A23) and (A26)) can be 
rewritten, so that one obtains : 

c ( P I  f ,  f ,  + 1 ; 0 0 y  + 2 P , -  f 3  1 C ( f l f 2 f 3 - l ; 0 0 ) 2 ) ] .  (51) 

The summation indices f ,  (i = 1, 2, 3) have to fulfil the condition (50). Furthermore, the 
Clebsch-Gordan coefficients C ( f ,  f ,  f ; 0 0)  with f = f ,  - 1 or f = f 3  + 1 are zero if one of 
the relations 

is not satisfied. 

rotation of the coordinate system (Eqs. (34), (35) and (37)) are always fulfilled. 

function 

Obviously, for axisymmetric shapes the three conditions introduced in order to prevent a 

Corresponding to equation (38) axisymmetric shapes are calculated minimizing the 

= wb + A,(a - 1) + A u ( U  - U”) + A (Aa - Aa,) + A, 2 , .  (54) 



N" 5 VESICLE SHAPES AND THEIR STABILITY 1091 

After substituting wb, a, U ,  Aa and z, in equation (54) by the corresponding expressions 
extrema of g are determined for vanishing values of the first derivatives of g with respect to 
the amplitudes X,, X,, ..., Xp,, as well as to the Lagrange multipliers A,, A" ,  A ,  and 
A;. The resulting system of nonlinear equations for the calculation of amplitudes and 
Lagrange multipliers is solved by the use of Newton's method. The stability of the shapes is 
determined as described in section 5. 

7. Results of the axisymmetric case. 

In the foIlowing the results of the calculation of axisymmetric vesicle shapes by the use of the 
model equations specified in the previous section will be presented. In order to evaluate the 
accuracy of the model, these results are compared with those obtained before by another 
method described in [6]. By the latter method axisymmetric equilibrium shapes are 
determined on the basis of an Euler-Lagrange ansatz, i.e. without the approximations used in 
the model presented here. In order to distinguish between these two different approaches 
they are called in the following the third order method and the Euler method, respectively. 
The aim of this paper is to investigate in detail the third or-deer method. Therefore, it is of 
special interest whether this method can reproduce the main features of the axisymmetric 
shapes obtained by the Euler method (cf. [6, 81). 

First, several results obtained by the Euler method shall be shortly repeated and explained. 
Figure 1 shows the membrane bending energy of equilibrium shapes for various normalized 
values of the difference of monolayer areas Aa, at the relative volume U, = 0.95. (Note that 
the same normalization procedure was used in both approaches, i.e. in the Euler method as 
well as in the third order method.) Each point of the curves of figure 1 corresponds to a shape 
of extremal bending energy determined by the Euler method. Obviously, all these shapes can 
be assigned to various classes. Shapes are considered to belong to the same class if they can be 
transformed into each other by continuous transitions through equilibrium shapes, and if they 
are characterized by the same symmetry properties. Five different classes of shapes are shown 
in figure 1 where they are denoted by Roman numbers. 

Fig. 1 .  - Relative membrane bending energies wh of various axisymmetric equilibrium shapes 
calculated by the Euler. method as functions of the relative leaflet area difference Aa, for 
U,, = 0.95. I-V : different classes of shapes. M, and M, : minima of wh belonging to the classes I1 and IV, 
respectively, of mirror symmetric shapes. S, and S, : symmetry breaking points. Points a-g correspond to 
the shapes shown in figure 2A. 
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Shapes of the oblate class I1 as well as of the prolate class IV are characterized by a mirror 
symmetry with respect to their equatorial plane (cf. Fig. 2A ; b, c, e and f). As shown in 
figure 1 these two classes contain the shapes for which, at the given volume, the energy 
wh(Aao) attains one of the local minima denoted by M, and M,, respectively. At the points 
S, and S, of the classes11 and IV new branches appear which correspond to non-mirror 
symmetric shapes belonging to the classes I and V,  respectively (cf. Fig. 2A, a and g). 
Accordingly, S, and S, are called symmetry breaking points. Obviously, at the same 
Aq-values the shapes of the classes I and V have lower energies than the corresponding 
shapes of the classes I1 and IV, respectively. Shapes of classes I and 11 as well as of classes IV 
and V are continuously transformed into each other passing the symmetry breaking points 
S, and S,, respectively. The shapes of the intermediate class I11 are non-mirror symmetric (cf. 
Fig. 2A, d). They involve on the left-hand side of the corresponding curve (Fig. 1) the 
characteristics of oblate shapes and on the right-hand side the characteristics of prolate ones. 
The behaviour of the w,(Au,)-curve of class 111 at its ends is still unclear because of numerical 
difficulties. 

a b t d e f 

a b C d e f 4 

Fig. 2. - Examples of axisymmetric equilibrium shapes calculated by the Euier- method (A) and the 
related shapes obtained by the third order method (B) for points a-g in figures 1 and 3 ,  respectively. The 
shapes b and f of (B) have been shown by the third or-der method to be unstable. 

Let us compare the results of the Euler method with those of the third order method where 
in the computations the expansion in spherical harmonics is cut at P,,, = 10. For that the 
results of the latter method are depicted in figure 3 using the analogous w,(Aa,)-plot as in  
figure 1. The values of amplitudes as well as of Lagrange multipliers of several solutions 
belonging to different classes in figure 3 are listed in table I. The corresponding shapes and 
the related shapes obtained by the Euler method are shown in figures 2B and 2A, 
respectively. 

Obviously, the results obtained by the two methods are almost identical. The comparison of 
figures 1 and 3 shows that at the relative volume uo = 0.95 these two approaches yield 
principaily the same wh (Aao)-dependence of an axisymmetric vesicle. Both approaches 
classify the calculated shapes in the same way, and the corresponding classes of shapes have 
the same symmetry properties. The mirror symmetry of the shapes of the classes I1 and IV (cf. 
Fig. 2B ; b, c, e and f') is reflected in the zero values of the coefficients Xp with odd numbers of 
! (Tab. I). In addition, for these shapes the Lagrange multiplier A ,  is zero since the 
requirement that the mass centre of the vesicle is the origin of the coordinate system is 
identically fulfilled. 
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1.0120 

1.1427 

- 0.0141 
- 0.0204 
- 0.2565 
- 0.0898 
- 0.0137 

0.0024 
0.0017 
0.000’7 

- 0.0002 
- 0.000 I 

0.0000 

24.3902 
8.3268 

24.9017 
0.2706 
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b 

1.012c 

1.1581 

- 0.0147 
0.0000 

- 0.2720 
0.0000 

- 0.0499 
0.0000 

- 0.0041 
0.0000 

- 0.0002 
0.0000 
0.0000 

~ 33.9840 
11.0796 
36.1541 
0.0000 

Fig. 3 .  - Relative membrane bending energies wb of axisymmetric equilibrium shapes calculated by the 
third order method (P,,, = 10) as functions of the relative leaflet area difference Aao for Do = 0.95. 
Broken lines indicate unstable shapes. Points a-g correspond to the shapes shown in figure 2B. For all 
other notations cf. figure 1. 

Table I. - Relative dlfferences of monolayer areas Aa,, relative bending energies w,,, 
amplitudes X p  and Lagrange multipliers for the solutions corresponding to points a-g in 
figure 3. The corresponding shapes are shown in figure 2B. 

c l d  -I 1.0135 1.017t 

1.1057 1.2052 

~ 0.0160 - 0.006s 
0.0000 0.0037 

~ 0.2825 - 0.0441 
0.0000 0.211 I 
0.0280 0.0223 
0.0000 ~ 0.0024 

~ 0.0045 0.0151 
0.0000 0.0043 
0.0009 0,0001 
0.0000 0.0017 

- 0.0002 0.0008 

- 3.1097 ~ 5.9977 
2.1846 4.2186 
0.0000 0.0000 
0.0000 0.0310 

e 

1.0244 

1.0892 

- 0.0174 
0.0000 
0.2844 
0.0000 
0.0460 
0.0000 
0.0121 
0.0000 
0.0038 
0.0000 
0.001 1 

- 2.1675 
1.562.3 

0.0000 
o.aooo 

f 

1.0300 

1.1141 

- 0.0140 
0.0000 
0.2452 
0.0000 
0.0870 
0.0000 
0.0397 
0.0000 
0.0187 
0.0000 
0.0080 

8.8526 
- 3.6600 
~ 6.5357 

0.0000 

g 

1.0300 

1.1004 

- 0.0146 
- 0.0157 

0.2483 
0.0668 
0.0617 
0.0322 
0.0248 
0.0153 
0.01 1 1  
0.0065 
0.0047 

2.3619 
- 0.6300 
-- 2.4747 

0.2673 
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The points c, d and e (Fig. 3) are located at extrema of the wb(AaO)-curves of classes 11, 111 
and IV, respectively. Therefore, the Lzigrange multiplier A ,, vanishes for the Corresponding 
solutions (Tab. I ; c, d and e), In general, all shapes of the different classes are characterized 
by X, as the amplitude with the greatest absolute value. The only exception is the middle 
region of the class of intermediate shapes (111) where X, dominates. 

The calculated Xe-values may be used for a rough evaluation of the influence of the limited 
number of spherical harmonics on the results of the method. If for higher P the values of 
IXp I become very small it may be expected that the error resulting from the use of a finite 
number of spherical harmonics is sufficiently small. This is in fact the case for most points of 
the curves in figure 3. (Moreover, calculations performed with P,,, = 6 show that a moderate 
reduction of the  value has only a minor influence on the results.) On the other hand, high 
values of IXt 1 at higher p indicate that in this case the use of spherical harmonics meets with 
difficulties. 

For a given solution the accuracy of the third order method can be evaluated as follows. On 
the one hand, the amplitudes Xp of this solution have been calculated by the third order 
method for input values U, = 1, uo and nuo in such a way that they fulfil equations (21-23). On 
the other hand, the initial equations (6-9) do not involve the approximations of the third order 
method. Thus, if the function r = r ( 8 )  = ro + ZXp Pp(cos 8) (f = 0 ... P,,,) with the same 
coefficients Xp is used in the axisymmetric versions of these initial equations, and if the values 
of the constraints are recalculated by a numerical integration of the resulting expressions (e.g. 
by Simpsons rule) these values will, in general, be different from the input values, and the 
corresponding differences will globally represent the effect of the approximations of the third 
order method. The latter values of the constraints are denoted by qnt, uinr and Anint, 
respectively. It is worth mentioning that the values of oo and uinc must be the same since no 
terms have been neglected to obtain equation (15). On the other hand, the differences 
between the input values a, = 1 and Aa, and the values aint and Paint, respectively, can be used 
for each solution as a criterion of the accuracy of the method. In addition to that, one may 
calculate the difference w b  - wint by the same procedure. The resulting relative differences 
were calculated as functions of the volume U, for those two characteristic points of the 
wb = w,(Aa,)-curve where wb attains a local minimum (cf. points M, and M, in Fig. 3). The 
results are given in figures 4a and 4b, respectively. As expected, the accuracy of the third 
order method decreases with decreasing values of U@ For uo = 0.95 the degree of inconsistency 
of the model is of the order 10-3 to 10-*. Comparing figures 4a and 4b it can be seen that at 
the first local minimum of w,(Auo) characterized by low Aq-values the accuracy of the third 
order method is higher than at the second local minimum characterized by higher 
Aq-values. 

The third order method should be regarded as an improvement of the analogous method 
which involves only the terms up to the second order in the deviation from a sphere. 
Neglecting also the cubic terms in equations (14-16) it can easily be proved that these three 
constraints are not independent anymore. Within the second order approximation the 
following equation holds at equilibrium : 

( 55 )  

Since r, is fixed by the relation ro = ( v , ) " ~  it follows that for a given relative volume 
uo all classes are condensed into one point characterized by the relative difference of 
monolayer areas hao = (uo)- For u o  = 0.95 this point is at Aa, = 1.0172. It follows that this 
second order approximation can not reproduce the results of the Euler method presented in 
figure 1. There are two other reasons for taking into account at least the cubic terms of the 
deviation from a sphere in the Taylor expansion. First, within the second order approximation 

3 t-, - 3 ri  Aa0 + 3 i o  ~ v o  = 0 , 
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Fig. 4. - Relative differences E ~ ,  FA and E~ between the values of model quantities of the third ordei- 
mefhod and the integrated values calculated by the exact equations (6).  ( 7 )  and (9) as functions of the 
relative volume uo : = (ao - a,,)iao, = (.?ao - Auint)/4ao and = (w, - wint)iw,. a) For the 
w,-minimum of class I1 (cf. M, in Fig. 3). b) For the w,-minimum of class IV (cf. M, in Fig. 3). 

one gets for axisymmetric shapes Ud” = ( Up,,)2. Consequently, this approximation does not 
distinguish between positive and negative values of Up,. Different signs of Upo, however, may 
correspond to completely different shapes [3, 17, 181. Second, within the second order the 
bending energy and the constraints are degenerated with respect to the coefficients of those 
spherical harmonics which characterize the nonaxisymmetric features of the solutions. I e 
they depend only on the sums Ud2’ but not on the amplitudes r ip ,  (cf. Eqs. (20-24). Thus, the 
third order approximation is the lowest order in the Taylor expansion which enables also the 
determination of nonaxisymmetric shapes of phospholipid vesicles. 

Using the third order method the stability of the resulting shapes can be determined by the 
relatively simple procedure described in section 5.  A solution is stable if all eigenvalues of the 



1096 JOURNAL DE PHYSIQUE rr N" 5 

matrix of second derivatives of the bending energy with respect to independent amplitudes of 
spherical harmonics are positive. As the result of this stability analysis within the 
axisymmetric case it has been shown that the mirror symmetric shapes of both classes 11 and 
IV become unstable at the symmetry breaking points S ,  and S, ,  respectively. 

Accordingly, curves in figure 3 which correspond to unstable shapes are drawn as broken 
lines. One may conclude that these unstable mirror symmetric shapes actually cannot be 
observed. For the corresponding Aa,-values the vesicle can assume only the non-mirror 
symmetric shapes belonging to the classes I and V. 

8. Discussion of the axisymmetric case. 

As shown in the previous section the third order method and the Euler method yield 
qualitatively the same results. On the other hand, there are considerable differences between 
the values of the model quantities obtained by the two methods. In the following, the origins 
of these differences are studied in more detail. 

The third order method involves approximations in connection with the Taylor expansion in 
the deviation from a sphere as well as with the use of a finite number of spherical harmonics 
within the Ritz procedure. Although the proof of the convergence of the Ritz procedure is 
problematic for the given variational problem it can be expected that for sufficiently high 
values of f,,, the accuracy of the rhii-d order method is mainly limited by the third order 
expansion. This statement can be proved by another way of calculating axisymmetric vesicle 
shapes which is called here the modified Euler method. By this method shapes are determined 
on the basis of the third order expansion in the displacement from a sphere but without 
expansion in spherical harmonics which allows to estimate the effects of these two different 
approximations. The basic idea of the modified Euler method is to apply an Euler-Lagrange 
ansatz to the axisymmetric (third order) versions of equations (13-16) and (31). Partial 
derivatives with respect to the polar angle q must vanish, so that the resulting Lagrange 
function can be used in the corresponding Euler equation with the azimuthal angle 
19 being the only independent variable. The resulting system of differential equations is solved 
in an analogous way as within the Euler method (cf. [6, S]), i.e. without further 
approximations. Note that the primary purpose of this modified Euler meihod is not the 
determination of equilibrium shapes hut just the evaluation of the error resulting from the use 
of a third order Taylor expansion. 

Figure 5 shows the results of the modified Euler method under the same conditions as used 
to obtain figures 1 and 3. The lines belonging to classes I1 and V in figure 5 could not be 
prolonged in direction of higher values of Aa, because of numerical difficulties. As expected 
the modqied Eider method yields globally the same results as the Eulei- method (Fig. 1) and 
the third order method (Fig. 3 ) .  

The influence of the use of a finite number of spherical harmonics on the accuracy of the 
solutions of the fhird order method can be estimated by comparing the results of this method 
(for f,,, = 10, Fig. 3 )  with those of the modified Euler method (Fig. 5) .  For lower 
ha,-values ( A u , ~  1.025) the results of these two methods are almost identical. This is in 
accordance with the above-mentioned minor effect of amplitudes Xp at higher f due to their 
small absolute values for almost all solutions shown in figure 3. This effect can also be proved 
by calculating vesicle shapes for varying values of f,,, and comparing the results with those of 
the modified Euler method. Such calculations are performed for f,,, = 5 to 15 at the two 
Aa,-values corresponding to points U and g in figure 3, respectively. The relative differences 
between the bending energies wb(') obtained in this way and the corresponding values 

calculated by the modified Euler method are depicted in figures 6a and 6b, respectively. It 
can be seen that with increasing f,,,-values the results of the th.iyd order method approach 
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Fig. 5. -Relative membrane bending energies wb of various axisymmetric equilibrium shapes 
calculated by the modified Euler method as functions of the relative leaflet area difference 
Auo for un = 0.95. For notations cf. figure 1. 
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Fig. 6. - Relative differences E! between the bending energies wzpl calculated for various values of 
t‘,,, by the third order method and the corresponding value wb(u) obtained by the modified Euler method 
in dependence on P,,, : sp = (wig’- w,’U’)/wf”. a) For Aun = 1.012 (cf. point a in Fig. 3). b) For 
Auo = 1.03 (cf. point g in Fig. 3). 

those of the modified Euler method. The differences between the results of these two methods 
are already for p,,, = 6 smaller than the differences between the results of the modij?ed Euler 
method and the Euler method. The latter differences represent the error which is caused by 
the third order expansion. It is evident, therefore, that the increase of P,,, up to very high 
values is not necessary since it would not improve the results of the third order method. 

It can be concluded that the main error of the third order method is caused by the third 
order Taylor approximation. This error can be estimated by comparing the results of the 
Euler method (Fig. 1 )  and the modified Euler method (Fig. 5) .  The differences between these 
two methods become considerable especially for higher values of the relative leaflet area 
difference hao (cf. classes IV and V in Figs. 1 and 5) .  Obviously, the term e nearly spherical 



1 09 8 JOURNAL DE PHYSIQUE I1 N" 5 

shape x does not comprise simply all shapes of a volume U, close enough to U, = 1 but for 
every given volume only those shapes whose Aa,-values are within a certain limited region. 
The differences in the w,,fAa,)-curves shown in figures 1 and 5 may be explained by the fact 
that for the shapes belonging to the classes IV and V the deviation U becomes quite large at 
the poles of these shapes ( / U /  = rd2, cf. Fig. 2, f and g) so that the requirement that the 
shapes must he nearly spherical is hardly fulfilled. It follows, that in general the accuracy of 
the third order method depends on the degree to which the calculated shape is nearly 
spherical. 

Within the Euler method all calculations are independent of the origin of the chosen 
coordinate system (cf. [61). It is evident that this independence is lost within the methods 
using a third order approximation. In these methods the model quantities are expressed in 
terms of the deviation from a corresponding sphere whose centre is the origin of the 
coordinate system. Consequently, these deviations are different for different positions of the 
reference frame. In particular, the contributions of neglected terms of higher orders in 
U are changing for varying positions of the corresponding sphere, so that the variational 
procedure yields new values of the model quantities as well as new shapes. In figure 7 the 
bending energy determined by the modified Euler method for a vesicle shape of class I 
(U, = 0.95, Aa, = 1.013) is shown as a function of z,, i.e. of the distance between the mass 
centre of the vesicle and the origin of the coordinate system. The dot at z, = 0 corresponds to 
the case where origin and mass centre are identical, i.e. the point used above to fix the 
coordinate system in the third order method as well as in the modified Euler method. If the 
coordinate system were not fixed the minimization of the bending energy would he performed 
also with respect to z,, i.e. along the curve shown in figure 7. Obviously, for increasing values 
of z ,  the bending energy would dccrease. However, a large shift of the corresponding sphere 
relative to a given shape increases the average absolute deviation of this shape from the 
corresponding sphere and, therefore, also the error of the third order expansion. In fact, the 
error of the method becomes with increasing 2,-values so large that the corresponding results 
must he considered to have no meaning within the present model. This behaviour was also 
tested for the relative volume uo = 0.999 and it was observed that an artificial dependence of 
the bending energy on z,, can also be found for almost spherical vesicle shapes. 

, "L 

-0.1 00 0 1  0 2  0.3 0.4 0.5 0.6 
Z r n  

Fig. 7. - Bending energy w b  of axisymmetric shapes calculated by the modified Eider. method as 
function of the distance between the origin of the coordinate system and the mass centre of the vesicle. 
Parameters : uo = 0.95, Aa, = 1.013. 
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It follows that leaving the origin of the coordinate. system free would cause a completely 
wrong behaviour of the model. In this work the mass centre of the vesicle was chosen as the 
centre of the corresponding sphere, i.e. the origin of the coordinate system. Of course, there 
are also other possibilities for choosing the position of the reference frame. For example, one 
could require that the average absolute deviation of the vesicle shape from the corresponding 
sphere attains a minimum. The present choice was made mostly for practical reasons. 

Concerning the stability of the calculated vesicle shapes the third order method represents 
an improvement compared with the Euler method since it enables the stability analysis by a 
relatively simple procedure. It is important to note that the results of the stability analysis 
performed within the third order method should be carefully applied for a generalization. 
Results concerning the stability of shapes are valid only within the frame given by the finite 
number of spherical harmonics used. In other words, the stability analysis of a given solution 
is as general as the method used to calculate the corresponding shape. Taking into account the 
good correspondence of the results of the Euler method and the third order method one may 
expect, however, that the results of the stability analysis are also valid for nearly spherical 
vesicle shapes calculated by the Euler method. 

Summarizing the results of the application of the third order method to axisymmetric shapes 
one may conclude that this method reproduces the main features of the results obtained 
before by the Euler- method. It is suggested, therefore, that the approach presented in this 
paper is applicable to the general case of the determination of nearly spherical vesicle shapes 
without symmetry restrictions. 

9. Application of the third order method without symmetry restrictions. 

All mathematical details needed to determine equilibrium shapes without restricting the 
calculations to a certain symmetry are given in sections 2-4. The corresponding computations 
are performed with f,,, = 6 at the relative volume o0 = 0.95. That means that for every shape 
the values of 49 amplitudes together with those of 9 Lagrange multipliers are determined 
solving the corresponding system of nonlinear equations. As the main result of this procedure 
the bending energies wb of equilibrium shapes are again calculated for varying values of the 
difference of monolayer areas Aa,. The results are shown in figure 8. (Note that the scales in 
this figure are different from those used in Figs. 1, 3 and 5 . )  

It can be seen that all axisymmetric solutions are also obtained within the general 
treatment. For these solutions the computation yields Xim = 0 and X i ,  = 0 if m # 0 (for the 
definition of these amplitudes cf. Eq. (39)). In figure 8 the same notation as in figure 3 was 
used in order to identify the characteristics of the five classes of axisymmetric shapes. 

The only new class obtained by the general treatment is denoted by VI. Shapes belonging to 
this class are not axisymmetric. Nevertheless they are characterized by a high symmetry, 
namely by a threefold mirror symmetry where every symmetry plane contains a pair of axes of 
the Cartesian coordinate system. Figure 9 shows the cross-sections of a nonaxisymmetric 
shape of class VI (Aa, = 1.02) with its three symmetry planes. For the shapes of class VI the 
only non-zero amplitudes are those amplitudes X i m  for which both f and rn are even numbers. 
The values of non-zero amplitudes as well as of Lagrange multipliers calculated for the shape 
shown in figure 9 are given in table 11. It is clear that for shapes of such a symmetry all six 
Lagrange multipliers which correspond to the constraints fixing the coordinate system are 
zero. 

The nonaxisymmetric vesicle shapes of class VI can be continuously transformed into the 
axisymmetric ones of the classes I1 and IV by passing the symmetry breaking points 
S ,  and S4, respectively. S, and S4 are not identical with M, and M, but are located at lower 
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Fig. 8. - Relative membrane bending energies wb of equilibrium shapes of different symmetries 
calculated by the general third order method (f,,, = 6 )  as functions of the relative leaflet area difference 
Aq, for vo = 0.95. Broken lines indicate unstable shapes. I-V : different classes of axisymmetric shapes. 
VI : class of nonaxisymmetric shapes. M, and M, : minima of the wb-curves of classes I1 and IV, 
respectively. S,-S, : symmetry breaking points. 

Fig. 9. - Cross-sections of a nonaxisymmetric shape obtained by the general rhird order method 
(f,,, = 6, uo = 0.95, Aa, = 1.02) with its three symmetry planes (cf. Fig. 10, c). 

Aa,-values, respectively. The transformation of an oblate shape (class 11) into a prolate one 
(class IV) can easily be understood as a transformation along the curve of class VI in the 
direction of increasing Aao-values. During this transformation the symmetry breaking points 
S, and S, are passed in this order. Let us start such a transformation from an oblate shape 
whose symmetry axis is the z-axis of the Cartesian coordinate system. Beyond the point 
S, this shape is more and more laterally elongated in direction of the x- or the y-axis. At 
S, the resulting axisymmetric prolate shape has one of these two axes as symmetry axis. If it is 
then rotated by At9 = 7r/2 in such a way that the z-axis is again the symmetry axis, this prolate 
shape is identical with the corresponding shape obtained within the axisymmetric case. 

It shall be noted that this result concerning the existence of nonaxisymmetric shapes is in 
accord with [20] where nonaxisymmetric ellipsoids with three reflection planes were supposed 
to fill the gap between oblate and prolate shapes in the phase diagram. 
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Table II. - Values of model quantities, amplitudes and Lagrange multipliers characterizing a 
noizuxisymmetric shape obtained by the general third order method. The shape is shown irz 
figure 9. 

parameters : U, = 0.95000 
Aao = 1.02000 

bending energy : wb = 1.09602 

non-zero amplitudes : Xbn = - 0.01708 
X ; ,  = - 0.23194 
x;2 = 0.11814 
Xi, = 0.02279 
X i 2  = - 0.01554 
Xi, = 0.00989 
X &  = - 0.00373 
X h  = 0.00295 

X &  = 0.00137 
XA, - 0.00194 

Lagrange multipliers : 
___ 

~ 

A,z = A = A = A s ,  = A 12 = A ,  = 0.00000 
Y \3 

A ,  = - 4.37637 
A , =  2.54524 
A ,  = 1.51796 

stability : all signs of the 40 eigenvalues are positive 

The stability analysis performed within the general case yields in the neighbourhoods of the 
symmetry breaking points S ,  and S, the same results as within the axisyinmetric case. In 
addition, it is shown that all shapes of class 111 are unstable with respect to nonaxisymmetric 
deformations. Furthermore, the shapes of the classes I1 and IV become unstable at 
S ,  (with increasing Aa,,) and S, (with decreasing 44, respectively. In figure 8 all curves 
belonging to unstable solutions are drawn as broken lines. It is seen that only one shape is 
stable for every Aa,-value. In all cases the stable shape is characterized by the lowest energy 
wb at the given Aa,. 

In this way the minimum M, (class IV) of the w,(Aa,)-curve is found to be the global 
minimum of this dependence. The corresponding prolate shape (Fig. 2B, e for P,,, = 10) can 
be intelpreted as the most << relaxed >) shape at the given relative volume v o  = 0.95. That 
means that the vesicle would assume this shape if Aa, were allowed to change by some slow 
process, for example, by a transversal movement of phospholipid molecules from one 
monolayer to the other (so-called flip-flop) under quasi-equilibrium conditions. 

Summarizing the results of the third order method in the general case one can say thal this 
method yields a complete picture of the behaviour of the shape of a nearly spherical vesicle. It 
is possible to describe the shape transformations of such a vesicle with respect to varying 
differences between the areas of the two monolayers (Aa,). There are no gaps left between 
different stable equilibrium shapes in the w,(Aa,)-diagram, i.e. a given stable shape can be 
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transformed into any other stable shape in a continuous manner by changing Aa,. In this way a 
vesicle can attain shapes which are characterized by the following symmetry elements : 

(i) one symmetry axis (classes I and V) ; 
(ii) one symmetry axis and one equatorial symmetry plane (classes I1 and IV) ; 
(iii) three symmetry planes (class VI). 
Figure 10 shows a series of stable equilibrium shapes belonging to different classes and, 

therefore, characterized by different symmetries. These shapes were obtained by the use of 
the general third order method for various values of Aa, (U, = 0.95, f,,, = 6 ) .  

at 

c) e) 

Fig. 10. - Examples of stable equilibrium shapes of different classes calculated by the general third 
order method (P,,, = 6 ,  uo = 0.95). a) Auo = 1.01, class I ;  h) Auo = 1.0135, class 11; c) Auo = 1.02, 
class VI ; d) Aa, = 1.0241, class IV ; e) Auo = 1.03, class V. The shapes a, h, d and e are axisymmetric 
whereas shape c is nonaxisymmetric. The prolate shapes d and e were rotated by At3 = 7ri2 with respect 
to those positions in which they are continuously obtained from shape c by increasing A u ~  This was done 
in such a way that their symmetry axis has again a vertical direction. 
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10. Conclusions. 

In the present paper a mathematical model to determine nearly spherical equilibrium shapes 
of phospholipid vesicles and their stability is developed without restrictions to any symmetry. 
It is based on the bilayer couple concept and assumes that equilibrium shapes correspond to 
the minimum of the membrane bending energy at constant values of the membrane area, the 
vesicle volume and the difference of areas of the two leaflets of the phospholipid bilayer. 

The bending energy as well as the three constraints are expanded up to the fourth order in 
terms of the deviation from a sphere. Taking into account all terms up to the third order the 
resulting integrals are calculated by expressing the deviation as a series of spherical 
harmonics. It was found that the coordinate system has to be fixed which was done by 
choosing the mass centre of the vesicle as its origin. Furthermore, two of its axes were fixed in 
order to prevent a rotation of the reference frame. This procedure to fix the coordinate 
system yielded six additional constraints. For the calculation of equilibrium shapes a Ritz 
procedure was applied by searching for those sets of amplitudes of spherical harmonics which 
minimize the expression for the bending energy and, at the same time, fulfil the nine 
constraints. 

Furthermore, a procedure to determine the stability of shapes obtained by the third order 
method is developed. Hitherto, a complete stability analysis has not been performed within 
the Euler method. The stability analysis presented here takes into account the constraints by 
distinguishing between dependent and independent amplitudes of spherical harmonics. A 
vesicle shape is stable if all eigenvalues of the matrix of second derivatives of the bending 
energy with respect to independent amplitudes are positive. The resulting procedure was 
applied to the axisymmetric version of the third order method as well as to the method in its 
general form. Since the general third order method yields many different solutions the 
determination of their stability is very useful in order to decide whether the corresponding 
vesicle shapes can be assumed to exist. 

For the special case of axisymmetric shapes the numerical results of the third order method 
were compared with those of the Euler method which does not involve the approximations of 
the former method. It was shown that up to a certain precision the third order method 
reproduces the results obtained by the Euler method. Since the main error of the third order 
method was found to be due to the Taylor expansion in terms of the deviation from a sphere it 
must be required that the shapes are nearly spherical. 

Applying the general third order method, stable vesicle shapes of different classes were 
calculated. It was shown that at the relative volume U, = 0.95 the global minimum of the 
membrane bending energy with respect to varying 4a,-values corresponds to a prolate 
axisymmetric shape which is also mirror symmetric with respect to its equatorial plane. 
Starting from this shape one passes at decreasing 4a, the region of nonaxisymmetric shapes 
and arrives eventually at an axi- but non-mirror symmetric cupped shape. In contrast to that, 
an increase of Aa, leads to an axisymmetric pear-like shape. Within the present model a 
further change of 4a, to even lower or higher values, respectively, is problematic since the 
corresponding shapes are not nearly spherical anymore. As shown by previous studies using 
the Euler method the limiting shape of class I (low 4ao-values) is a sphere containing another 
invaginated sphere whose membrane is oriented inside out, i.e. this invaginated sphere 
encloses external medium. On the other hand, ,  the limiting shape of class V (high 
Aao-values) consists of two spheres sitting on top of each other. In this case both spheres 
contain the vesicle medium, i.e. the smaller sphere is evaginated 16, 9, 101. Assuming that 
these limiting shapes are also stable they may be taken into consideration in order to 
supplement the description of the general behaviour of vesicle shapes with relative volumes 
close enough to unity. 
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Concerning the Taylor expansion in terms of the deviation from a sphere it was shown that 
the second order of this expansion is not sufficient to calculate a w,(Aao)-dependence of 
axisymmetric shapes. Taking into account also the cubic terms a good agreement of the third 
order method and the Euler method was obtained for axisymmetric vesicles with relative 
volumes U" 3 0.95. Furthermore, it was found that the third order method can describe also 
nonaxisymmetric shapes which were assumed to exist in the gap of the phase diagram of 
axisymmetric shapes between oblate and prolate ellipsoids [X, 201. For nearly spherical 
vesicles these nonaxisymmetric shapes are ellipsoids with three reflection planes. 

In section 2, the equations for the bending energy (13) and the three constraints (14-16) 
contain also the fourth order terms of the Taylor expansion. In principle, these terms could be 
included into the calculations, and the corresponding results would be expected to be more 
accurate than those of the third order method. However, taking into account the good 
agreement of nearly spherical shapes obtained by the third order method and the Euler 
method, respectively, it can not be expected that for these shapes the inclusion of fourth order 
terms would lead to qualitatively new results. On the other hand, if the deviation 
u is not small compared with r,, any Taylor expansion will meet with difficulties, so that for the 
calculation of the corresponding equilibrium shapes other mathematical methods have to be 
envisaged. 
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Appendix. 

Calculation of integrals by using spherical harmonics. 

To obtain equations (20-25) from equations (13-16) one has to expand the displacement 
u ( 8 ,  p) in spherical harmonics (cf. Eq. (17)) and to calculate the corresponding integrals. 
This can be done by using the properties of spherical harmonics, e.g. their orthonormality and 
the eigenvalue equation : AY!,  = - f (f + 1) Yp,. In addition, for the calculation of products 
of three spherical harmonics the coupling rule : 

can be used. The coefficients A (f f2 f ; m m 2 )  are defined by the Clebsch-Gordan 
coefficients C (f,  f, f ; m ,  m 2 )  (cf. [23])  as follows : 

Indices f and m, ( i  = 1, 2) have to fulfil the conditions (26-28) where P replaces 
f,. The integral of products of three spherical harmonics can then be calculated in the 
following way 

Y P , ~ ,  Yp2m, Y P ' ; m ,  d o  = A (f l  f 2  f, ; m1 m2) 6 m ,  + m 2 .  m 3 .  (A31 
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In a first step all expressions containing the V-operator are transformed by the use of the 
relation 

where U ,  and u2 denote arbitrary scalar functions. In this way one gets 

[VU]  2 1  = - A(u’) - U AU 
2 

and 

1 
2 

VU . V( [VU]’) = - A  - U  A(u2) -- u 2  Au + - U  A ( u  AZL ) + - u(Au)’ 

1 1 
- U  A(A(u’ ) )  - - AU A ( u 2 ) .  
4 4 

2 2  j :  i1 
(A6) 

Taking into account relations ( A 3  and (A6j the only differential operator appearing in the 
integrals is the A-operator, so that corresponding expressions can be simplified using the 
eigenvalue relation of spherical harmonics. Subsequently, all integrals needed can be 
calculated by the use of the orthonormality condition as well as of equations (A1 j-(A3). The 
results of integration are listed below : 

AudO = 0 s 
m 

u A ~ d ( 2  = -  C f ( f + l ) U d 2 )  s f = O  
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U!’’ and Ud?)p,, p, are defined in equations (24) and (25) ,  respectively. The conditions for the 
summations are given in equations (26)-(28). 

The nine different integrals appearing in equations (29)-(31) may also be calculated by the 
use of special properties of spherical harmonics. For that the trigonometric expressions 
sin 6 cos i p ,  sin 8 sin p as well as cos 8 are replaced by corresponding combinations of the 
L‘ = 1 spherical harmonics ( Y I n , ) .  Then the integrals of first order terms read 

For the integration of higher order terms it is necessary to consider in detail various 
symmetry relations of the Clebsch-Gordan coefficients as well as the explicit expressions of 
these coefficients for p2 = I ,  i.e. of coefficients C (PI 1 P, ; m , m,) (cf. [23]). The resulting 
integrals may he written as follows : 

zt’sin 6 cos p d o  = J 

u’sin 6 sin p d o  I 
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In equations (A24) and (A25) the notation B (PI P, f 3  : rn, m,) has been used for the 
following expression : 

(P, + m 1  + m,) (P, + 1 + ml + 111?) 

(2 P, - 1)  (2 P, + 1) 
A (P, P, e, - I ; m l  nz2) - J Bee, 8 2  P 3 ;  m ,  r n z )  = 

Coefficients A ( P I  P, f ,  ; rn m 2 )  are defined by equation (A2). Summations in 
equations (A24) and (A25) have to be performed under the conditions 

/rn,l S P , ,  (i = 1, 2 ) ;  lm, + m 2 +  11 S P ,  (A28) 

whereas in equation fA26) the relations (27) and (28) have to be fulfilled. Furthermore, in 
equations (A26) and (A27) the coefficients A (f ,  f 2  f ; rn , m,), (f = P, - 1 ,  e3 + l), are zero 
if one of the conditions (26)-(28) is not fulfilled with f replacing f ,  in those conditions. 
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