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Vesicle Deformation by an Axial Load: From Elongated Shapes to
Tethered Vesicles

Volkmar Heinrich,* Bojan Bozi&,* Sasa Svetina,*S and Bostjan Zeks*S
“Institute of Biophysics, Medical Faculty, Lipiéeva 2, University of Ljubljana, and SJ. Stefan Institute, Jamova 39,
SI-1000 Ljubljana, Slovenia

ABSTRACT A sufficiently large force acting on a single point of the fluid membrane of a flaccid phospholipid vesicle is
known to cause the formation of a narrow bilayer tube (tether). We analyze this phenomenon by means of general
mathematical methods allowing us to determine the shapes of strongly deformed vesicles including their stability. Starting
from a free vesicle with an axisymmetric, prolate equilibrium shape, we consider an axial load that pulls (or pushes) the poles
of the vesicle apart. Arranging the resulting shapes of strained vesicles in dependence of the axial deformation and of the area
difference of monolayers, phase diagrams of stable shapes are presented comprising prolate shapes with or without
equatorial mirror symmetry. For realistic values of membrane parameters, we study the force—extension relation of strained
vesicles, and we demonstrate in detail how the initially elongated shape of an axially stretched vesicle transforms into a shape
involving a membrane tether. This tethering transition may be continuous or discontinuous. If the free vesicle is mirror
symmetric, the mirror symmetry is broken as the tether forms. The stability analysis of tethered shapes reveals that, for the
considered vesicles, the stable shape is always asymmetric (polar), i.e., it involves only a single tether on one side of the main
vesicle body. Although a bilayer tube formed from a closed vesicle is not an ideal cylinder, we show that, for most practical
purposes, it is safe to assume a cylindrical geometry of tethers. This analysis is supplemented by the documentation of a
prototype experiment supporting our theoretical predictions. It shows that the currently accepted model for the description

of lipid-bilayer elasticity (generalized bilayer couple model) properly accounts for the tethering phenomenon.

INTRODUCTION

A point-force acting on the fluid membrane of a flaccid
phospholipid vesicle is known to pull out a narrow bilayer
tube (tether) from the vesicle membrane (Waugh, 1982). A
variety of experimental techniques using tether formation
have been developed and have substantially increased our
knowledge about the mechanical properties of lipid mem-
branes. For example, tether-pulling experiments provided
accurate values for the local bending modulus of fluid
bilayers (Bo and Waugh, 1989; Song and Waugh, 1993;
Heinrich and Waugh, 1996), and they also allowed for the
first measurements of the nonlocal bending modulus
(Waugh et al., 1992; Raphael and Waugh, 1996). Further-
more, the interlayer drag coefficient characterizing the fric-
tional interaction between the two membrane leaflets when
sliding past each other was measured by tether formation
(Evans and Yeung, 1994). Recent long-term observations of
slowly growing membrane tethers could be interpreted by
postulating an elastically driven, accelerated flip-flop of
lipids from the inner to the outer monolayer (Raphael and
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Waugh, 1996; Svetina et al., 1998). Other sets of recent
experiments involved tethers that were caused by internal
structures like microtubules growing inside vesicles (Hotani
and Miyamoto, 1990; Kuchnir Fygenson et al., 1997a,
1997b; Umeda et al., 1998). Beside these studies of artificial
lipid membranes, a number of tether experiments have been
performed using biological cells, revealing new insight in
cell membrane elasticity (e.g., Hochmuth et al., 1973, 1982,
1996; Dai and Sheetz, 1995). Recently, tethers pulled from
red blood cells provided a measurement of the interaction
strength between the plasma membrane and the underlying
protein network (Waugh and Bauserman, 1995; Hwang and
Waugh, 1997).

In these experiments, the measurements are usually car-
ried out when tubular membrane extensions of sufficient
length have already formed. Variation of the tether width or
the tether length provides the desired mechanical deforma-
tion. For the interpretation of measurements, it is generally
assumed that the (often invisible) tether has a cylindrical
shape, and simple parametrical models are used to extract
the values of different membrane material constants from
the measured data. The experience from a large number of
experiments, and the often good agreement of the measured
data with predictions of the parametrical models indicate
that the used procedures are sufficiently accurate to fulfill
the purpose that they were designed for. Yet the fundamen-
tal questions why and how tethers form in the first place are
not addressed by these models. The interesting task to reveal
the basic mechanisms of tether formation is left to studies
using more general mathematical methods and, most likely,
involving nontrivial numerical computations.
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Such studies can be based on the existing broad knowl-
edge about the shapes of free flaccid vesicles. The shape
variety of unsupported lipid vesicles has been the subject of
elaborate theoretical and experimental research work (re-
viewed e.g., in Lipowsky, 1991; Sackmann, 1995; Svetina
and Zeks, 1996; Seifert, 1997). A continuum mechanical
model accounting for the double-layer structure of the mem-
branes of artificial phospholipid vesicles (“generalized bi-
layer couple model”, Evans, 1974; Svetina et al., 1992;
Seifert et al., 1992; Bozic et al., 1992; Wiese et al., 1992;
Heinrich et al., 1993) has been able to reproduce many
experimental observations quite reasonably (e.g., Kis et al.,
1993; Miao et al., 1994; Wintz et al., 1996; Ddbereiner et
al., 1997), and a general picture of the shape behavior of
free vesicles is emerging. Naturally, the theoretical work
was accompanied by the development of mathematical
methods for the appropriate description of closed surfaces
exhibiting the elastic properties of simple bilayer membranes.

Only very recently, some of these tools were applied also
to the shapes of axially strained vesicles. Considering the
stability of the cylindrical section of a pipette-aspirated,
tethered vesicle, it was shown that the existence of tethers is
consistent with the generalized bilayer couple model (Buk-
man et al., 1996). Starting more generally from the well-
known equilibrium shapes of axisymmetric free vesicles, it
is instructive to consider axial loads that pull or push the
vesicle poles apart. Modeling this situation, a preceding
study (Bozi¢ et al., 1997) was devoted to the physics of
membrane deformations caused by a force acting in one
point, and to the specification of an Euler—Lagrange varia-
tional procedure for this case. However, concentrating pri-
marily on the basic mechanisms of the onset of tether
formation, the calculations in that study were restricted to
prolate axisymmetric vesicle shapes containing a mirror
plane at the equator. Moreover, the stability of stationary
shapes was not analyzed, and numerical problems had lim-
ited the range of considered deformations to moderate ves-
icle extensions. In the present paper, we extend the analysis
by allowing also for shapes with broken equatorial mirror
symmetry, and we show that these shapes actually dominate
the shape behavior of axially strained vesicles. Furthermore,
the Euler—Lagrange variational procedure used previously is
now supplemented by a Ritz method that we recently de-
veloped to describe strongly deformed vesicle shapes. The
combination of these two methods has enabled us to study
considerably larger deformations than before, and to include
a stability analysis of stationary shapes. With these im-
provements, we may now systematically explore the shapes
and shape transformations of axisymmetric, axially strained
vesicles. Although the theoretical background as well as the
basic mechanisms presented earlier remain fully applicable,
we are now able to specify the predictions for related
experiments more precisely. Performing the numerical cal-
culations for a realistic range of material parameters of
phospholipid membranes, the present results should be di-
rectly applicable to experimental situations. Finally, we
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suggest a new experiment and document a prototype version
of it that has partially inspired the present theoretical study.

The paper is organized as follows. The next section gives
an overview of the generalized bilayer couple model, i.e., of
the elastic energy contributions that determine the shape of
a simple bilayer membrane, and of the relevant constraints.
The model specifications for axially strained vesicles and
the mathematical methods used to tackle the resulting vari-
ational problem are explained in the following two sections.
Eventually, numerical results are presented and discussed.
The conclusions emphasize the implications of our results
for related experiments.

GENERALIZED BILAYER COUPLE MODEL

In general, the shapes of flaccid vesicles are governed by the
elastic energy of the vesicle membrane. It is the sum of the
local and the nonlocal bending energy (Helfrich, 1973;
Evans, 1974, 1980; Bozi¢ et al., 1992; Miao et al., 1994)
and reads, for symmetrical bilayers,

kr (AA - AA())z

ke
Weleb+m=2J(C1+Cz)2M+M i

(1)

The local bending energy W, is the integral of the squared
sum of the two principal curvatures C; and C, over the
closed surface area 4, multiplied by the local bending mod-
ulus k.. The nonlocal bending energy W, is the energy of
relative stretching of the two layers with respect to each
other. The difference between the areas of the two layers is
given by

AAth(CIJrCz)dA, )

where / is the distance between the neutral surfaces of the
layers. The equilibrium value of the area difference A4, is
defined for isolated monolayers. It depends on the numbers
of lipid molecules constituting the layers and on the (re-
laxed) area per molecule. The nonlocal bending modulus is
denoted by k..

The value of the nonlocal bending modulus %, can be
casily estimated to be a few times the value of the local
bending modulus &, (Waugh et al., 1992). Therefore, vesicle
deformations are generally accompanied by comparable
changes in both the local as well as the nonlocal bending
energy. Yet, although name and definition of the nonlocal
bending energy first appeared quite some time ago (Evans,
1974, 1980; Helfrich, 1974), its importance in the mechan-
ics of layered membranes has long been overlooked. The
different models of vesicle shapes that have been suggested
and studied during the past two decades were mainly dis-
tinguished by the value used for k., with values ranging
from zero to infinity (e.g., Deuling and Helfrich, 1976;
Svetina and Zeks, 1989; Seifert et al., 1991; Heinrich et al.,
1992). We emphasize that it was tether formation that
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answered the question which of the existing vesicle-shape
models is most adequate to describe experimental observa-
tions (Bozi¢ et al., 1992). The first measurements of the
nonlocal bending modulus %, by means of tether formation
(Waugh et al., 1992) provided also a quantitative verifica-
tion of the generalized bilayer couple model, which is based
on the energy expression given in Eq. 1. (For an early
account of the history of this model, see the Introduction of
Heinrich et al., 1993.) Recently, it was demonstrated that
the study of vesicle shape fluctuations could also serve to
test this model quantitatively (Ddbereiner et al., 1995,
1997). The latter works adhere to the notion of the area-
difference elasticity model (synonym to generalized bilayer
couple model) that was developed independently (Seifert et
al., 1992; Miao et al., 1994) to improve the understanding of
the budding shape transition of free vesicles. It should be
noted that, in that model, the material parameter character-
izing the nonlocal bending energy is defined as &/

To determine the equilibrium shape of a free vesicle, one
has to minimize the elastic energy given in Eq. 1. Because
the membrane tensions of free vesicles as well as of the
strained vesicles considered here are always small com-
pared to tensions that would cause a significant change of
the membrane area 4, we may take the area to be constant.
Not allowing for changes in the osmolarity of the solution
surrounding the vesicle, the vesicle volume V' is also fixed.
Therefore, the energy minimization has to be performed at
constant values of these constraints. Stationary shapes are
characterized by a vanishing first variation of the energy
functional that includes the constraints via Lagrange multi-
pliers. To decide whether a stationary shape corresponds to
a minimum of the elastic energy, an appropriate stability
analysis has to be performed.

The resulting equilibrium shapes of free vesicles have
been arranged in a V' — A4, phase diagram of stable shapes,
which is in reasonable agreement with experimental obser-
vations (Heinrich et al., 1993; Miao et al., 1994; Jari¢ et al.,
1995). The two main regions of this phase diagram contain
prolate and oblate axisymmetric shapes, respectively. Either
region is further divided into subregions of shapes with or
without equatorial mirror symmetry. Except for vesicles
with very low volume-to-area ratios (Wintz et al., 1996), it
has been shown that, for realistic values of the ratio k/k,,
nonaxisymmetric shapes are generally of little or no rele-
vance as stable equilibrium shapes (Heinrich et al., 1993;
Jari¢ et al., 1995).

VESICLE DEFORMATION BY AXIAL STRAIN

Based on the knowledge about unsupported vesicles, we
study the following physical situation. Starting from a free
vesicle with a known equilibrium shape, we consider two
points of the vesicle surface that are moved apart by a force
acting on these two points. The force may be a pulling force
acting on the outside of the vesicle, or a pushing force
exerted by an internal structure. Because the lipid bilayer is
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fluid, the vesicle initially will merely change its orientation
until the two points span the largest possible distance be-
tween any two points of the vesicle surface. This reorien-
tation does not cost energy, i.e., it takes place at infinitesi-
mal force. Any further increase of the distance between the
two points changes the vesicle shape and requires a finite
force. If the free vesicle has a prolate axisymmetric equi-
librium shape, the force will thus eventually act along the
symmetry axis and pull the poles of the vesicle apart. We do
not expect this deformation to affect the rotational symme-
try of the vesicle. In the case of an oblate shape, however,
the force will act on two points of the largest cross section
perpendicular to the symmetry axis, and so, it will cause a
nonaxisymmetric deformation. Yet even in this case, it
seems likely that sufficiently high forces will eventually
cause the deformed vesicle to become axisymmetric. How-
ever, the theoretical treatment of this case is considerably
more difficult and is beyond the scope of this study. Con-
sidering only prolate shapes, the present analysis stays
within the case of rotational symmetry of free as well as of
axially strained vesicles.

Principally, there are two different ways to impose the
axial vesicle deformation considered here. They can be
studied experimentally using the techniques presented as
prototype versions in Figs. 1 and 2. It is important to note
that these two cases correspond to different thermodynamic
potentials (cf. Fig. 3). In the first scenario, the vesicle poles
are clamped at two points separated by a fixed distance
(Figs. 1 and 3 4). Experimentally, this can be achieved by
using the (often unwanted) property of lipid membranes to
adhere to glass surfaces. Attaching a vesicle membrane to
the tips of two glass micropipettes (Fig. 1) allows us to set
the desired pole-to-pole distance Z and to monitor the equi-
librium shapes that the vesicle assumes at different given
values of Z. In this first scenario, the constant pole-to-pole
distance enters the theoretical description as an additional
constraint. It is incorporated in the calculations via an ad-
justable Lagrange multiplier representing the force that
maintains this distance. The total energy is then identical
with the membrane’s elastic energy. Alternatively, we may
consider a constant force acting on the poles, and a variable
pole-to-pole distance that depends on the value of this force
(Figs. 2 and 3 B). In the experimental example shown in
Fig. 2, the applied magnetic field sets the force that the
paramagnetic bead exerts at the free vesicle pole. Increasing
the force results in longer axial vesicle extensions, which
eventually leads to the formation of a narrow membrane
tether (invisible in Fig. 2) connecting the lemon-shaped
main vesicle body with the pipette tip. (Details of the
experimental setup including a possible accurate measure-
ment of the applied forces in the range of piconewtons can
be found in Heinrich and Waugh, 1996.) In the thermody-
namic description of this case, the work done by the force
contributes to the system’s total energy, and it has to be
included in the energy minimization (Podgornik et al., 1995;
Bozi¢ et al., 1997). The potential energy due to the axial
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FIGURE 1 Series of four video micrographs of a phospholipid vesicle
whose membrane was point-attached to the tips of two glass micropipettes.
The elongated vesicle consists of tubular sections (membrane tethers) and
a lemon-shaped main body. At increasing distance between the pipette tips
the tether width reduces, and the main vesicle body becomes more spher-
ical. The main body is usually located on one side of the strained vesicle.
In the second picture, it was forced into the vesicle’s center by applying a
directed flow through the left pipette for a short time. Similarly, the bottom
shape involving two tethers resulted from a rapid increase of the vesicle’s
pole-to-pole distance by simultaneously moving both pipettes away from
the main body. Alignment of the Hoffman optics and contrast enhancement
due to the different refraction indices of different sugar solutions in- and
outside the vesicle allowed us to make the tethers visible. The horizontal
bar corresponds to 50 um.

force is simply
Wy=—FZ, 3)

where F denotes the axial force, and Z is the pole-to-pole
distance of the vesicle shape. The stationary shapes corre-
sponding to these two scenarios are the same. However,
their stability, as well as the character of shape transitions,
may be different in the two cases.

VARIATIONAL PROCEDURES

The variational problem of minimizing the total energy in
the presence of constraints is tackled with two different
mathematical methods. The first is the usual Euler-La-
grange formalism that requires us to solve a higher-order
Euler differential equation. Second, we present a new Ritz
method (cf. e.g., Courant and Hilbert, 1924) that expands
the vesicle shape in a series of basis functions and searches
for those values of expansion coefficients that minimize the
energy and fulfill the constraints. The general theoretical
background and technical details of the application of the
Euler—Lagrange procedure to the problem of axially
strained vesicles have been explained in Bozi¢ et al. (1997)
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FIGURE 2 Series of video micrographs of a phospholipid vesicle whose
membrane was point-attached on one side to the tip of a glass micropipette
and on the other side to a paramagnetic bead. An electromagnet was used
to apply increasing pulling forces to the vesicle (fop to bottom). Once the
equilibrium vesicle extension had established, the pipette was moved
backward to place the bead at a predefined horizontal position. The tether
connecting the main vesicle body and pipette tip in the lower five pictures
is too thin to be resolved by light microscopy. The same aqueous solution
was used in- and outside the vesicle to avoid an asymmetry that could
cause a non-negligible spontaneous curvature of the lipid bilayer. An
independent measurement of the local bending modulus &, was carried out
for this vesicle and proved that it was unilamellar. The horizontal bar
corresponds to 50 wm.

and shall not be repeated here. As an exception, we recall an
interesting analytical result of the Euler—Lagrange formal-
ism. Proper treatment of the boundary conditions revealed
that a finite force acting on a single point of the vesicle
membrane leaves the vesicle contour, as well as its first
derivative, continuous (smooth) at this point. The principal
curvatures, however, show a logarithmic divergence (Pod-
gornik et al., 1995). Technically, this discontinuity is taken
care of by an expansion of the Euler differential equation at
the poles. The resulting two-point boundary value problem
is solved numerically by a shooting-to-a-fitting-point algo-
rithm. Unfortunately, for larger deformations, this method
becomes extremely sensitive to the initial guesses of adjust-
able parameters, and it usually fails already at quite mod-
erate values of the pole-to-pole distance. An additional
deficiency is the lack of a simple stability analysis of
stationary shapes within this Euler method. The Ritz
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FIGURE 3 Sketches of the two scenarios corresponding to different
thermodynamic ensembles. (4) The first is called “constant-z scenario.”
The vesicle poles are attached to fixed points, so that the vesicle assumes
its equilibrium shape at a given pole-to-pole distance Z (cf. Fig. 1). (B)
Alternatively, in the “constant-f scenario” the pole-to-pole distance is
variable. Its equilibrium value depends on the (given) force acting on the
vesicle poles. As is often the case in experiments (cf. Fig. 2), the force
acting on the free vesicle pole is exerted by a bead (filled circle) in this
sketch. Note that the contour of the axisymmetric vesicle (with the sym-
metry axis oriented horizontally) included in this graph was obtained as a
stationary solution of the model presented in this paper. Its volume-to-area
ratio was chosen (by eye) corresponding to that of the vesicle shown in
Fig. 1.

method has enabled us to overcome most of these difficul-
ties. Its main drawback is that it is an approximate method.
However, its accuracy can always be tuned by the number
of terms included in the shape expansion, and by a suitable
parametrization of the shape. Furthermore, the accuracy of
the Ritz method can be easily tested by comparing the
results of this method with those of the Euler—Lagrange
formalism in the range of vesicle extensions where both
methods work.

The application of direct variational methods such as the
Ritz method to vesicle shape calculations is not new (see
e.g., Heinrich et al., 1992, 1993). A previously used Ritz
method expanded the radial distance between the vesicle
surface and the origin of the coordinate system (suitably
chosen inside the vesicle) in a series of spherical harmonics.
Accordingly, the independent variables of the shape param-
etrization were the spherical angles. That method has
proven to be a powerful tool to determine the equilibrium
shapes of free vesicles of arbitrary symmetry including their
stability (Heinrich et al., 1993), and it also has provided new
insight in the effects of thermal shape fluctuations on the
vesicle shape (Heinrich et al., 1997). However, it has per-
formed poorly when applied to the elongated shapes studied
here because, at increasing pole-to-pole distance, these
shapes more and more tend toward (and eventually turn
into) shapes that are not anymore single-valued functions of
the spherical angles. We have therefore developed a new
approach (considering for now only axisymmetric shapes)
that is based on a parametrization more suitable for strongly
deformed vesicles. Because the contour of a vesicle is
always a single-valued function of the arc length measured
along the contour line, this arc length is the most practical
choice for the independent variable. It turned out to be
convenient to take the direction of the contour normal (i.e.,
the angle between the normal and a reference direction) as
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the dependent variable. This choice has provided a surpris-
ingly robust way to determine the axially stretched shapes
of interest. Technical details of this Ritz method are rather
subtle and will be published elsewhere.

The results presented in the following were obtained by a
combination of the Euler-Lagrange approach and the Ritz
method. Less deformed vesicle shapes were mainly calcu-
lated by the more accurate numerical integration of the
Euler differential equation. At the same time, these shapes
were used to check the reliability of the Ritz method. We
found that including the first 100 terms of the shape expan-
sion in the Ritz method yielded results that were, in all
checked cases, indistinguishable from the results of the
Euler method. If not stated otherwise, we continued to use
this number of terms when calculating the more strongly
deformed shapes that are inaccessible by the Euler approach.

The constraints of constant membrane area and vesicle
volume generally complicate the stability analysis of sta-
tionary shapes within the Euler method. For all shapes
calculated within the Ritz method, we have determined the
local stability with respect to those (axisymmetric) defor-
mations that conserve the constraints using an improved
version (see Heinrich et al., 1997) of the formalism devel-
oped originally in Heinrich et al. (1992).

RESULTS AND DISCUSSION
Dimensionless quantities

Inspection of Eq. 1 shows that the elastic energy is scale-
invariant, i.e., the equilibrium shapes do not depend on the
actual size of the vesicle. We may use this property to
present our results in a general, dimensionless fashion (cf.
e.g., Heinrich et al., 1993). As usual, we take the charac-
teristic vesicle size to be the radius Rg of the sphere having
the same surface area as the vesicle. We introduce dimen-
sionless quantities by a normalization with respect to this
sphere. To distinguish normalized quantities from the re-
spective original ones, we denote the normalized quantities
by small letters. Thus, for example, v = V/(¥; mR3) (relative
vesicle volume), a = 1 = 4/(4wR3) (relative surface area),
Aa = AA/(87hR) (relative area difference of monolayers),
z = Z/Rg (dimensionless pole-to-pole distance), and so on.
The normalized elastic energy w,, is measured in units of
the bending energy of a sphere (87k,). With this, the rela-
tive nonlocal bending energy becomes w, = g(Aa — Aa,)?,
where ¢ is the ratio between the nonlocal and the local
bending modulus, ¢ = k/k.. The dimensionless axial force
is defined as /= FRg/(87k,) (cf. BoziC et al., 1997).

Phase diagram of stationary shapes (q — «)

For the presentation of numerical results, it is useful first to
give a transparent overview of the relevant stationary
shapes. This can be achieved by arranging the stationary
shapes according to their geometrical characteristics into
phase diagrams, ensuring that similar shapes occupy adja-
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cent locations in these diagrams. The membrane area a = 1
is the same for all shapes due to the normalization. Thus, the
stationary shapes of free vesicles may be characterized by
the relative volume v and the relative area difference Aa. It
is important to realize, however, that, unlike the constrained
vesicle volume, Ag may change when a vesicle deforms, as
it represents the average curvature of the vesicle shape (cf.
Eq. 2). Its value can be determined by solving the varia-
tional problem at given values of v and Aq,,. Naturally, the
resulting equilibrium value of Aa depends on the ratio ¢
between the nonlocal and the local bending modulus.
Choosing different values for g, however, has the mere
effect of remapping a given stationary shape (with known
Aa) to a new value of Ag,, whereas the overall catalog of
stationary shapes is not affected by the value of ¢. In other
words, if we consider two distinct vesicle populations with
membranes characterized by different values of ¢, we will
find that any stationary shape obtained for one population
will also be a stationary shape for the other population.
However, the Ag, values of two vesicles having the same
stationary shape will generally be different if the two ves-
icles belong to different populations. This applies both to
unsupported vesicles (Heinrich et al., 1993) as well as to
axially strained vesicles (Bozi¢ et al., 1997).

The fact that the catalog of stationary shapes does not
depend on g allows us to classify the stationary shapes in a
general manner. For this, we first choose ¢ to be infinitely
large. In practice, this means that the nonlocal bending
energy is replaced by a constraint enforcing Aa = Aag,.
Then, the two constrained geometrical parameters v and Aa
map the resulting stationary shapes of free vesicles into a
two-dimensional phase diagram. Unfortunately, the phase
diagram of stationary shapes of axially strained vesicles is
three-dimensional, with the pole-to-pole distance z as the
third parameter. For relative volumes not too small, how-
ever, we expect the general shape behavior to be similar at
different volumes. To study this behavior qualitatively, we
may thus inspect a constant-volume cut through the three-
dimensional phase diagram.

The z — Aa phase diagram resulting from such a cut at
v = 0.95 is shown in Fig. 4, 4 and B. It includes information
about the stability of stationary shapes at ¢ — . Testing the
stability for ¢ — o0 is useful because switching to more
realistic, finite values of ¢ merely adds the degree of free-
dom to adjust Aa for the same stationary shapes (cf. Hein-
rich et al., 1993). Thus, shapes that are unstable at ¢ — «
cannot be stable at finite ¢, and so they need not concern us
any further. In contrast, the stable stationary shapes of Fig.
4 may become unstable with respect to Aa changes, and so
their stability has to be checked anew at every finite value
of g.

Lines P and E in Fig. 4 were obtained for f = 0 and
comprise the well-known prolate axisymmetric shapes of
free vesicles with equatorial mirror symmetry (line P) and
without such symmetry (line E), respectively. At low Ag,
the mirror symmetric shapes are stable (steep, solid part of
P on the left), whereas, at point S, the mirror symmetry of
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FIGURE 4 The z — Aa phase diagram of stationary shapes of axially
strained, prolate axisymmetric vesicles with relative volume v = 0.95 and
g — . The rectangular inset of part (4) is enlarged in part (B). The lower
two lines comprise stationary shapes of free vesicles (f = 0) with equatorial
mirror symmetry (line P) and without such symmetry (pears, line E),
respectively. The pear line (E) branches off line P at the symmetry breaking
point S and ends at the limiting shape L. Elongated shapes (f > 0) of either
symmetry are found above the respective f = 0 lines. In (4), the shape
symmetries in different regions are indicated using hollow vertical arrows.
The region of elongated pear shapes (hollow up arrow) is bounded by lines
E and T, whereas elongated mirror symmetric shapes (hollow double
arrow) are located between lines P and M. Line M marks the shapes with
the largest possible pole-to-pole distance at given Aa (f — ). The mirror
symmetric shapes between the dashed part of P and line T are unstable at
g — %, which is indicated by placing the corresponding vertical arrow in
parentheses. See Fig. 5 for an illustration of typical shapes along a vertical
scan through this phase diagram.

stable shapes is broken. The dashed part of line P starting in
S continues the sequence of now unstable mirror symmetric
f = 0 shapes. The stable shapes beyond this point are pears
(line E), with the limiting shape (point L) consisting of two
different spheres connected through an infinitesimal neck.
(Note that here and in the following we use “pear” to denote
any prolate axisymmetric shape that is polar, i.e., that does
not have an equatorial reflection plane.) For ¢ — o, the
shape transition at S resembles a second-order phase tran-
sition that was described in Svetina and Zeks (1990).
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Because we are only interested in elongated (f = 0)
axially strained vesicles, we need to inspect only the shapes
located above the f = 0 lines. The upper boundary of the
region of interest (f — <, line M) comprises the shapes with
the largest possible axial extension at given Aa. It was
shown (Bozi¢ et al., 1997) that these limiting shapes are
mirror symmetric. Hence, there has to be a transition be-
tween mirror symmetric elongated shapes and elongated
shapes with broken mirror symmetry. This transition takes
place at the z values forming line T. The mirror symmetric
shapes located between this line and line M are the only
relevant (low-energy) solutions of the considered varia-
tional problem in this region. Alternately, at every point
between line T and line P one finds two relevant solutions,
i.e., a mirror symmetric stationary shape and a stationary
shape with broken mirror symmetry. In this case, the mirror
symmetric shape is unstable. This situation is illustrated in
Fig. 5 showing a vertical scan through the z — Aa phase
diagram at Aa = 1.1. It presents the local bending energies
of both solutions as a function of z and includes a few
typical shapes.

Shape sequences and force-extension relations
atg=4

Having mapped the stationary shapes into the above phase
diagram, we need to establish which of these shapes are
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FIGURE 5 Relative local bending energy w,, of stationary shapes at v =
0.95 and Aa = 1.1 as a function of the dimensionless pole-to-pole distance
z. A few typical shapes are included. Except for the shape at point T, they
have been arranged in such a way that the position of the (vertical)
symmetry axis of each shape corresponds to the z-value of this shape.
Characteristic points were labeled according to the labeling of lines in Fig.
4. The energy of stable (at ¢ — %) shapes is depicted by the solid line
starting in point E and ending (not shown) at the z-value corresponding to
point M (marked by the vertical dash-point line). At low vesicle extensions,
these stable shapes are nonmirror symmetric pears, whereas at point T they
gain an equatorial mirror symmetry. The dashed line connecting P and T
denotes the energy of unstable mirror symmetric shapes. The shapes at E
and P are shapes of free vesicles (f = 0), whereas the limiting shape at M
corresponds to an infinitely large axial force.
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successively assumed by a real axially strained vesicle.
Thus, we now consider more realistic, finite values of the
ratio ¢ between the nonlocal and the local bending modulus.
Measured values of the nonlocal bending modulus %, agree
with estimates considering the membrane as a double layer
of two homogeneous thin shells (Waugh et al., 1992; Ra-
phael and Waugh, 1996), both giving a value for £, that is
three to four times the value of the local bending modulus
k.. We choose ¢ = 4 as a typical ratio. As explained above,
within this generalized bilayer couple model the area dif-
ference Aa is a mere geometrical quantity whose value
changes as the shape of a given vesicle is deformed. In
contrast, we recall that the reference value Aq, represents
the difference between the numbers of lipids constituting
the two leaflets of the bilayer membrane. Not allowing for
lipid transbilayer movement (flip-flop), Aa, remains con-
stant when an axial force deforms the observed vesicle, and
so it is this quantity that is a basic control parameter char-
acterizing a given vesicle.

Before turning to the shape behavior of axially strained
vesicles, it is useful to recall a well-known result of the
study of free vesicles. Comparing the stable prolate shapes
obtained for ¢ = 4 at continuously increasing values of Aq,
reveals a large jump between mirror symmetric vesicle
shapes and pear shapes having an almost closed neck
(Svetina and Zeks, 1992; Miao et al., 1994). This discon-
tinuous (first-order) transition is accompanied by a discon-
tinuous change of Aa at the critical value of Ag,. The
intermediate Aa-values correspond to unstable or metasta-
ble stationary shapes. Hence, a number of stationary shapes
of free vesicles that are stable at ¢ — o become indeed
globally unstable when they gain the freedom to adjust Aa.

We are, of course, mainly interested in the behavior of
those stationary /= 0 solutions that correspond to globally
stable shapes, i.e., to real free vesicles. When subjecting
these vesicles to an axial strain, we observe a surprising and
highly interesting variety of shape transformations. The
particular shape sequence of a strained, elongating vesicle
mainly depends on the vesicle’s Ag, value. Furthermore, a
given vesicle may behave differently in the two considered
experimental scenarios (constant-z or constant-f scenario,
cf. Fig. 3). Figure 6 presents an overview of the different
types of behavior observed. It combines three typical shape
sequences obtained for representative axially strained, pro-
late vesicles. The first two example vesicles (A: Ag, =
Aalg_y ~ 1.02209; and B: Aa, = 1.7, Aal;—, =~ 1.02214) are
mirror symmetric at / = 0. As the vesicle extension in-
creases, the mirror symmetry is broken in both cases. In the
constant-z scenario the symmetry-breaking transition takes
place along the path marked J,. This transition is continuous
for vesicle A, whereas it is discontinuous for vesicle B.
Alternately, in the constant-f'scenario, the symmetry-break-
ing transition (along path Jy) is discontinuous for both ves-
icles. The shapes of the third example vesicle (C: Ag, = 1.9,
Aal;_, ~ 1.17624) are nonmirror symmetric throughout the
depicted series, and all shape changes are continuous.
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FIGURE 6 Shape series of three axially strained example vesicles cho-
sen at increasing Aa,, values: (4) Aa, = 1.02209, (B) Aa, = 1.7, and (C)
Aa, = 1.9. For all vesicles, v = 0.95 and ¢ = 4. The shape series A and
C both start with the shape of the free vesicle (f = 0). B shows only shapes
that are immediately involved in the symmetry-breaking transition. Shapes
before and after this transition (not shown) are similar to those in 4. The
shape series 4 and B depend on the considered scenario. Parts of shape
paths that are different in the two scenarios were labeled J; and J,,
respectively. J; marks the symmetry-breaking transition in the constant-f’
scenario. This transition is a discontinuous jump between shapes a and e in
A and between shapes a and d in B, respectively. In the constant-z scenario,
a similar discontinuous transition occurs in B between shapes b and ¢
(labeled J,). However, the symmetry-breaking transition in 4 is continuous
in the constant-z scenario (along path J,). In this case, the vesicle passes
smoothly through shapes a—e, changing its symmetry at b = T. In C, all
shape changes are continuous. See also the Appendix.

Figure 6 only includes shapes that are globally stable in at
least one of the two possible scenarios. The computational
procedure to arrive at such shape sequences is rather
lengthy. For each vesicle (i.e., for each Aq,), one first needs
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to find all branches of stationary solutions that are relevant
in the considered range of the axial force f or the pole-to-
pole distance z. Figure 7 shows the force—extension curves
of stationary solutions for the three example vesicles used in

A
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FIGURE 7 Force-extension curves for the three example vesicles shown
in Fig. 6. The three parts, 4—C are arranged in the same order as in Fig. 6,
i.e., Aa, increases from 4 to C. Thin lines correspond to mirror-symmetric
stationary shapes, whereas the thicker lines represent f—z relations of
stationary pears. Points labeled T belong to line T of Fig. 4 and mark the
junctions of curves corresponding to shapes with different symmetries. The

f~z relations are continued for larger forces in Fig. 8. For a vesicle with a

characteristic size Rg¢ = 10 wm and a membrane bending modulus k, =
107"° J, one unit of the dimensionless force f corresponds to 0.25 pN. For
more details, see the text and the Appendix.
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Fig. 6. The graphs clearly demonstrate that the variety of
stationary solutions is quite complex. Being able (within the
Ritz method) to analyze the stability of stationary solutions
proves to be extremely useful because it allows us, in a next
step, to focus our attention exclusively on the locally stable
shapes. Eventually, whenever two or more locally stable
solutions coexist at a given value of the control parameter (f'
or z), the globally stable shape is obtained as the solution
with the lowest total energy. The interesting but somewhat
technical details of this procedure are given in the Appen-
dix. It presents enlarged graphs of the critical regions of Fig.
7, A and B that reveal the (f, z) locations of shapes labeled
by small letters in Fig. 6. Furthermore, the Appendix also
visualizes the deformation of the three example vesicles by
presenting the various solution branches as trajectories in
the catalog of stationary shapes that was originally intro-
duced in Fig. 4.

Let us concentrate here mainly on the more practical
aspects of the force—extension relations of the three exam-
ple vesicles (Figs. 7, 4—C and 8). Fig. 8 continues the f~=z
curves of Fig. 7 for higher forces. In these graphs, we
generally use thin lines to represent the f~z relation of
axially strained, mirror symmetric stationary shapes,
whereas thicker lines correspond to axially strained pear
shapes. Fig. 7, A—C reveals how the interconnection of
different solution branches evolves at increasing Aa,,. At the
largest depicted forces (upper right regions of Fig. 7, A—C
and all of Fig. 8) the globally stable solutions are, in all
three cases, the pear shapes of the thick branch. (Note that,
although at higher forces the thin branch of mirror symmet-
ric shapes becomes indistinguishable from the thick pear
branch, it does not merge with the latter branch but remains
an independent solution.) For the third example vesicle (Fig.
7 C) this pear branch is globally stable at all forces down to
/= 0. In contrast to that, the globally stable solutions of the
lower-force regions of Fig. 7, 4 and B are the mirror sym-
metric shapes of the thin line (cf. also Fig. 6). The critical
region of the transition between globally stable solutions of
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FIGURE 8 Continuation of the force—extension curves of the three
example vesicles of Fig. 7 for relative forces f = 5. The curves were
labeled according to parts 4—C of Fig. 7. Note that, for each vesicle, two
different lines corresponding to mirror symmetric and nonmirror symmet-
ric shapes are shown but are indistinguishable.
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different symmetries shifts to lower forces as we increase
Aa,. For more details concerning the actual character of this
transition, see the Appendix.

It should be mentioned that new, nonmirror symmetric
solutions (not shown) continue to branch off the thin line of
mirror symmetric shapes as the force increases. The first of
these additional branches appears at /'~ 5.03 (vesicle A),
f =~ 2.51 (vesicle B), and as low as /'~ 1.42 for vesicle C.
The corresponding transitions are in all cases continuous.
As one would expect, the stability of the mirror symmetric
shapes changes at this branching point, i.e., the mirror
symmetric branch actually gains a weak local stability. At
even larger forces, the local stability of mirror symmetric
shapes alternates whenever a new nonmirror symmetric
solution branch appears. Accordingly, the stability of each
new, nonmirror symmetric branch is opposite from the
stability of the respective mirror symmetric solution. This
behavior can be easily understood and will be addressed in
a later section. For now, it should only be noted that the
energy of all such branches is always significantly higher
than the energy of the coexisting, globally stable pear
branch.

A particularly interesting result is that all three vesicles
behave similarly at higher forces. The vesicles correspond-
ing to the lines in Fig. 8 generally have a tethered shape (cf.
e.g., the last three shapes in Fig. 6 4 and C). The mirror
symmetric shapes have shorter tethers on both sides of the
main vesicle body and a reflection plane containing the
equator of the main body. As mentioned above, the force—
extension curves of mirror symmetric and nonmirror sym-
metric shapes become almost identical at larger forces. They
are practically indistinguishable in Fig. 8. This applies also
to the additional solution branches mentioned in the previ-
ous paragraph. Most interestingly, in the force range de-
picted in Fig. 8 the unified /~z curves become almost linear,
i.e., the tethered vesicles act as almost ideal Hookean
springs. The spring constant appears to be the same for all
three vesicles, i.e., it becomes independent of the value of
Aa, in this force range. This may prove very useful for
practical purposes, because Ag, is usually hard to measure
experimentally. The results of Fig. 8 suggest the system
“two-point attached, tethered vesicle” as a good candidate
for an ultrasensitive spring in micromechanical experi-
ments. Alternately, the force needed to hold a vesicle at a
given extension clearly depends on the value of Aq,, i.e., on
the difference between the numbers of lipids constituting
the two membrane leaflets, and thus on vesicle history. The
tether formation from vesicles with larger Ag, values re-
quires lower forces, which is mainly due to the smaller
nonlocal bending deformation accompanying tether forma-
tion from vesicles with larger Aa,,. This feature may provide
a convenient way to measure Aa, experimentally.

In conclusion of this section, we emphasize that, beyond
a certain force, the globally stable shapes (at ¢ = 4) are, in
all considered cases, asymmetrical. They consist of a lemon-
shaped main vesicle body and a narrow membrane tether
that has been pulled out of the main body. Accordingly, we
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call the transitions studied above tethering transitions. Note
that the tethering transition is a continuous shape change if
the /' = 0 shape of a given vesicle is already asymmetrical.
Figures 7, A—C and 8 demonstrate that large Aa,, values tend
to favor the formation of a tether. Beyond the tethering
transition, the main body of a tethered vesicle becomes
more spherical at increasing pole-to-pole distances, and the
tether width reduces (see Fig. 6). This agrees well with
experimental observations (cf. Figs. 1 and 2).

Phase diagrams at q = 4

The above examples provide a basic insight into the typical
shape behavior of axially strained vesicles. It is instructive
to generalize the results by extending the study to the whole
range of Aa, values of prolate vesicles. Repeating the cal-
culations of the previous section for a large number of
vesicles, we have mapped the resulting globally stable
shapes into comprehensive ¢ = 4 phase diagrams. The
natural choice of control parameters for such diagrams is
(Aay, f) in the constant-f scenario and (Aq,, z) in the con-
stant-z scenario. The respective phase diagrams are shown
in Fig. 9, 4 and B.

In both diagrams, a given vesicle is mapped to its Ag,
value on the x-axis, whereas the vesicle’s deformation due
to axial strain is reflected by a vertical upward movement in
either figure. The depicted Aa, range roughly corresponds
to globally stable, prolate vesicle shapes. The thick lines (G¢
in Fig. 9 4, and G, in Fig. 9 B) divide the region of strained
vesicles into subregions of mirror and nonmirror symmetric
shapes, respectively. The globally stable mirror symmetric
shapes are confined to the lower left regions of both figures.
The diagrams confirm that at increasing deformation the
globally stable shape of every prolate vesicle will eventually
be nonmirror symmetric.

Note that the global stability lines, Gy and G,, generally
mark different shape transitions in Fig. 9, 4 and B (cf. the
paths labeled J; and J, in Fig. 6, 4 and B). In the constant-f
scenario (Fig. 9 4), the transition across line Gy is every-
where discontinuous. Alternately, line G, in Fig. 9 B con-
sists of two distinct parts. To the left of the critical point C,,
line G, is identical with line T, marking a continuous
symmetry-breaking transition between mirror symmetric
and non-mirror symmetric globally stable shapes. To the
right of point C,, the transition at line G, is discontinuous.
In this region, line T (dash-dot line) merely marks the
locations where globally unstable branches of different
symmetries merge. It should briefly be mentioned that, in
both scenarios, there is a small range of Ag, values where a
deforming vesicle crosses the respective G line twice. In this
range, the f'= 0 shapes are pears. At increasing deformation,
they reach a small range of intermediate forces where their
energy becomes larger than the energy of the coexisting
mirror symmetric shapes. Passing the respective G line for
the second time, the pear shapes become globally stable
again.
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FIGURE 9 Phase diagrams of axially strained, prolate vesicles in the two
scenarios at ¢ = 4 (v = 0.95). (4) Aa, — fphase diagram for the constant-f
scenario; and (B) Aa, — z phase diagram for the constant-z scenario. The
G-lines (G; in 4 and G, in B; thick, solid lines) separate the region of
globally stable mirror symmetric shapes (left of the respective G-line) from
the region of globally stable pear shapes. The H-lines (H;in 4 and H,, in B;
dashed lines) mark the locations where stationary pear shapes first appear
at increasing Aa,. Lines T (dash-dof) and T' mark junctions between
branches of stationary shapes with different symmetries. Point C, (in B
only) is a critical point at which the character of the shape transition across
line G, changes. To the left of C,, this transition (at line T = G,) is
continuous, whereas it is discontinuous to the right of C,. The dotted lines
P and E (in B only) are the lines of stationary shapes of free vesicles

= 0).

In the previous section, we have mentioned that addi-
tional nonmirror symmetric solutions continue to appear at
increasing deformation. Fig. 9, 4 and B include a line T’
that marks the locations at which the first of these new
solution branches appears in the depicted Aq, range. For
further illustration, we have also included the (dashed) lines
H¢ and H,. These lines subdivide the region of globally
stable mirror symmetric shapes into a part where mirror
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symmetric shapes are the only stationary solution (left of the
respective H line) and a part that additionally contains
globally unstable pear shapes. Furthermore, the dotted lines
P and E of stationary / = 0 solutions were included in Fig.
9 B to illustrate the locations at which various other lines
originate. The lower branches of lines P and E also represent
the lower boundary of this phase diagram.

Tether shape and degeneracy of
tethered vesicles

Already, in the discussion of Figs. 7 and 8, we have noted
that the force—extension curves of mirror symmetric and
nonmirror symmetric shapes become almost identical at
larger forces. Each of the f~z lines of the three example
vesicles (A—C) shown in Fig. 8 actually represents a set of
various distinct solutions, including the additional nonmir-
ror symmetric solutions that successively appear at increas-
ing deformation (e.g., at line T, cf. Fig. 9). Both the shapes
of the latter nonmirror symmetric solutions as well as the
mirror symmetric shapes have tethers on both sides of the
main vesicle body. The near-identity of the f~=z curves of
different stationary solutions of a given vesicle strongly
indicates that the tether is basically cylindrical. Obviously,
we may cut off the tether on one side of the mirror sym-
metric shape and attach it to the tether on the other side
without significantly affecting the axial force. If the tether
were not cylindrical but, for example, an elongated cone, we
could not do this manipulation without deforming some
parts of the vesicle, which, in turn, would hardly be possible
without a force change. Alternately, we found that, in all
considered cases, the globally stable asymmetrical shape
has a significantly lower energy than the other solutions.
Furthermore, the stability analysis reveals a pronounced
minimum for the globally stable asymmetrical solution,
whereas the mirror symmetric solution and the additional
nonmirror symmetric solutions are more or less degenerate
with respect to one degree of freedom.

To resolve this puzzle, we have simulated a situation
where we can push the main vesicle body along the tether
while the pole-to-pole distance remains constant. This was
done by introducing another constraint that enforces a fixed
distance z,, between the lower pole of the vesicle and the
equator of the main vesicle body. Continuously changing
this distance, we have monitored the resulting shapes and
their elastic energy for vesicle A at z = 4.5. Energy and
shapes are combined in Fig. 10. Inspecting the z,, depen-
dence of the elastic energy explains at once the degeneracy
of the mirror symmetric shape and all other shapes involv-
ing two tethers. We see that we may indeed cut out a (more
or less) cylindrical part of the tether on one side and add it
to the tether on the other side without changing the elastic
energy as long as at least a small tethered part remains on
either side of the main vesicle body. Only when the tether
completely disappears on one side the vesicle slides down
into the energy minimum of the globally stable, asymmet-
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FIGURE 10 Relative elastic energy and typical shapes of a vesicle
(vesicle 4 of Fig. 6 at z = 4.5) whose main body is pushed along the tether,
as a function of the distance z,, of the equator of the main body from the
lower vesicle pole. The vertical symmetry axis of each shape has been
aligned corresponding to the value of z,,. The central energy plateau is
practically flat, but close inspection reveals small deviations from an ideal
straight line. These deviations are more pronounced toward the plateau
edge. The deep energy minimum corresponds to a shape with a single
tether on one of its sides. For k, = 107! J, the energy difference between
the minimum and the plateau is ~30 kT.

rical shape. Of course, there have to be two equivalent
energy minima because flipping a given shape vertically
does not affect its energy. The energy difference between
the minimum and the broad plateau of vesicles with two
tethers can thus be ascribed to the high energy that is needed
to initialize a tether, i.e., to bend the membrane into a tether
right at the pole. This energy cost is paid only once if the
vesicle has only one tether, which explains the global sta-
bility of the corresponding asymmetrical shape.

These results further support that the tether shape is
practically cylindrical. In contrast, if we require smoothness
of the higher derivatives of the vesicle contour, it is rather
unlikely that the tether is an ideal cylinder. Another indica-
tion for the existence of (small) deviations from a cylindri-
cal tether shape is the observation that the energy plateau in
Fig. 10 is not ideally flat. A small but significant energy
maximum is seen adjacent to the minimum of the globally
stable shape. It corresponds to that additional nonmirror
symmetric stationary solution that appears first at increasing
deformation (at line T’ in Fig. 9). Of course, the energy
plateau of Fig. 10 exhibits further minima or maxima for all
other additional solutions. However, they are too weak to be
recognized.

The presence of the noticeable first maximum suggests
that the deviations of the tether shape from a cylinder are
largest at the vesicle pole and/or the junction with the main
vesicle body. To establish the importance of such devia-
tions, we have recalculated the globally stable shape of
vesicle A at z = 4.5 with very high accuracy. For this, the
number of terms included in the shape expansion of the Ritz
method was doubled to 200. The resulting tether shape is
enlarged in Fig. 11, where the tether is somewhat distorted
by the scales used for the coordinate axes. This microscopic
picture of the tether contour confirms that, over most of its
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FIGURE 11 Microscopic picture of the tether of vesicle 4 of Fig. 6 (at
z = 4.5) as calculated by the Ritz method with a very high accuracy. Only
one side of the tether contour is shown, with the vesicle’s symmetry axis
oriented horizontally. Note that the scales were chosen to maximally
enhance the shape of the tether contour. Apart from perturbations at the
vesicle pole (on the left) and at the junction with the main vesicle body (on
the right), the tether is practically cylindrical.

length, the tether is indeed indistinguishable from a cylin-
der. As indicated in Fig. 10 by the dependence of the elastic
energy on z,,, significant deviations of the tether shape from
an ideal cylinder are found only at the pole and at the
junction with the main body. Recent analytical results prove
that these deviations act as perturbations superposing a
wave-like shape with a fast decaying amplitude on the
mean, cylindrical tether shape. (The details of this analysis
will be published elsewhere.) For most practical purposes,
however, these waves do not significantly alter the under-
lying cylindrical shape of the tether.

CONCLUSIONS

The present theoretical paper studies the shape behavior of
bilayer vesicles that are deformed by axial loads acting on
two opposite points of the vesicle membrane. Restricting
the calculations to prolate axisymmetric vesicle shapes, the
use of general variational procedures allows us to consider
arbitrary deformations and thus to overcome the limitations
of parametrical models. To cover a large range of deforma-
tions, we employ or introduce mathematical methods that
are particularly suitable for the description of axially
strained vesicles.

Vesicles subject to low axial forces are shown to exhibit
a highly interesting and rather complex variety of elongated
shapes. With the exception of the work by Umeda et al.
(1998), previous studies of axially strained vesicles have
been restricted exclusively to mirror symmetric shapes
(Bozic€ et al., 1997; Kuchnir Fygenson et al., 1997b, where
the latter work’s simplifications in the physical description
of closed bilayer membranes, as well as in the parametrical
treatment, may have led to substantial uncertainties in the
quantitative predictions made). Although some of the con-
clusions drawn in the very recent paper by Umeda et al.
(1998) are in agreement with our results, that paper disre-
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gards the nonlocal bending deformation, and it also allows
the vesicle volume to change (keeping the pressure differ-
ence across the membrane constant). It should be mentioned
that, for the deformations considered here, mechanically
induced pressure differences across the membrane are neg-
ligibly small in comparison with pressures generated by
osmotic imbalance. Therefore, because the vesicle mem-
brane is practically impermeable to osmotically active sub-
stances over the time frame of an experiment, the vesicle
volume cannot change as long as the external conditions
(temperature, osmolarity) are kept constant.

The various phase diagrams (Figs. 4 and 9) presented
here for prolate vesicles with a relative volume v = 0.95
include shapes with and without equatorial mirror symme-
try. Fig. 4 gives a representative overview of the stationary
shapes of axially strained vesicles within the generalized
bilayer couple model. For a characteristic ratio, ¢ = 4,
between the nonlocal and the local bending modulus, Fig. 9
reveals the regions of globally stable shapes of different
symmetries in dependence of the vesicle’s area difference of
monolayers, Aa,, and its axial deformation. On this basis,
we find that only a small fraction of the mirror symmetric
shapes studied earlier correspond to stable solutions of the
considered variational problem. Generally, the shape behav-
ior of axially strained vesicles is shown to be dominated by
polar shapes, i.e., by shapes with broken mirror symmetry.
For ¢ = 4, we inspect the detailed shape behavior of typical
model vesicles, and we demonstrate how additional insta-
bilities may occur.

Higher forces are found to cause the formation of narrow
tubular membrane extrusions. This tethering transition may
be continuous or discontinuous. Its character depends on
how the vesicle elongation is controlled (i.e., whether an
increasing axial force or an increasing pole-to-pole distance
is imposed), and on vesicle history (i.e., on the difference
between the numbers of lipids constituting the two mem-
brane leaflets, which is basically established when a vesicle
forms). Starting from free vesicles with prolate shapes, we
find that elongation of any such vesicle will eventually lead
to an asymmetrical shape. Although shapes involving teth-
ers on both sides of the lemon-shaped main vesicle body
may exist in a metastable or locally degenerate state for a
considerable time, the ultimate, globally stable shape of a
tethered vesicle always consists of the main vesicle body
and a single tether on one of its sides. (We cannot exclude
that vesicles having smaller Aa, values than the prolate
vesicles studied here may initially form tethers on both
poles in a symmetrical fashion. However, we expect that,
also in this case, there is a critical vesicle extension at which
the asymmetrical shape becomes globally stable.) Finally,
inspecting the microscopic shape of the tether, we demon-
strate that, for most practical purposes, it is safe to describe
the tether by a cylinder.

We emphasize that the numerical results presented here
were based on the currently accepted model for the appro-
priate description of the shapes of lipid bilayers. This gen-
eralized bilayer couple model has proven to be a powerful
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and reasonably accurate model that has satisfactorily repro-
duced a number of experimental observations made on free
phospholipid vesicles. The present work extends this model
by including the effect of an axial load. Our results indicate
that, in most cases, omission of any part of this framework
(like, e.g., disregard of the nonlocal bending energy or an
inappropriate treatment of the two constraints of membrane
area and vesicle volume) will result in a poor theoretical
description of related experiments.

The results of the present study provide the basis for a
better understanding of a variety of experiments including
preliminary observations reported here for the first time. For
example, we are able to explain the formation of membrane
tethers, which, in a number of experiments, have been used
to establish important mechanical characteristics of artificial
and biological membranes. Furthermore, the physical situ-
ation that we describe theoretically reflects two quite dif-
ferent and yet, as far as membrane mechanics are con-
cerned, practically equivalent experiments. In the first type,
the vesicle is fixed at one point while a pulling force acting
on a different point of the vesicle membrane causes the
deformation studied above. A prototype of this experiment
is documented in Figs. 1 and 2. The observed vesicle shapes
are in a striking qualitative agreement with our theoretical
results. In addition, the present analysis applies equally well
to a second kind of experiments in which a rod-like struc-
ture growing inside a vesicle pushes two points of the
vesicle membrane apart. In recent experiments of this type
(Hotani and Miyamoto, 1990; Kuchnir Fygenson et al.,
1997a, b; Umeda et al. 1998), the pushing force was exerted
by microtubules that assembled spontaneously inside phos-
pholipid vesicles. The resulting shapes are again in general
agreement with our predictions.

Although the results included in this study appear to
represent the principal shape behavior of axially strained
vesicles quite comprehensively, the present work is far from
providing a complete picture of the manifold of possible
shapes. To avoid overburdening of this paper, we have
considered only vesicles with a relative volume of 0.95, and
we have kept the ratio between the nonlocal and the local
bending modulus fixed at ¢ = 4. Thus, instead of docu-
menting extensive studies of the effects of changes in these
parameters, we have chosen to present the tools that enable
us to perform such studies and to demonstrate their appli-
cation to a few representative examples. The analysis of
further details seems more instructive and manageable only
when carried out as part of the interpretation of specific
experimental data. Because it is feasible that experimental
results including accurate measurements of the relative ves-
icle volume and of the force—extension relation will soon be
available, we hope to be able to apply the theoretical frame-
work developed here to concrete practical observations in
the near future. This will certainly provide another way to
verify the validity of the generalized bilayer couple model,
and it may also enable us to deduce additional information
about the mechanical properties of bilayer membranes.

Biophysical Journal

Volume 76 April 1999

APPENDIX

In the main text we have given an overview of the different types of
possible shape transitions of axially strained vesicles. Let us provide here
a more detailed illustration of the interesting and, in some aspects unusual,
properties of this physical system.

Figure 12 enlarges the critical region of the force—extension graph (Fig.
7 A) of the first example vesicle. As before, thin lines represent mirror
symmetric shapes. For this vesicle, the pear shapes of the thick branch are
the first nonmirror symmetric stationary solutions found for f = 0 at
increasing deformation, i.e., for lower forces, the mirror symmetric branch
is the only stationary solution. As therefore expected, the mirror symmetric
shapes are locally stable up to point T in both considered scenarios
(constant-z and constant-f). Beyond point T, the mirror symmetric branch
is found to be unstable in both scenarios. In the constant-z scenario, the
mirror symmetric branch remains the only solution up to point T. Thus, the
corresponding mirror symmetric shapes must also be globally stable. The
symmetry-breaking transition at point T is a typical second-order transition
in this scenario. The new pear branch is locally stable and, because it is the
only locally stable stationary solution above point T, it is also globally
stable. Therefore, at increasing pole-to-pole distance, the vesicle smoothly
changes its symmetry, assuming the shapes a, b, ¢, d and e (cf. Fig. 6 4,
path J,) in a continuous manner. The situation is quite different in the
constant-f scenario. In this case, there are three stationary solutions in the
force range between points d and b (=T). The part of the pear branch above
point d is found to be locally stable, whereas the strained pear shapes
between points b and d are unstable. The latter shapes correspond to a
maximum of the total energy, representing the energy barrier between the
two locally stable shape branches of different symmetries that coexist in
this force range. Plotting the energy as a function of the force (Fig. 13)
reveals the critical force f,;, = 4.14 at which the global energy minimum
shifts from mirror symmetric to nonmirror symmetric shapes. This discon-
tinuous, first-order transition is marked in Fig. 12 by the vertical dashed
line (J;) connecting points a and e. In this case, we expect the vesicle shape
to jump from shape a to shape e when the force reaches the critical value

Jurie (cf. Fig. 6 A, path Jp).

The f~z graph of the second example vesicle (Fig. 7 B) shows an
additional low-force pear branch. However, at low forces the globally
stable shapes are still mirror symmetric, i.e., the shapes of the lower pear
branch of Fig. 7 B are unstable or metastable and are not assumed by the
vesicle. Inspection of the critical region (enlarged in Fig. 14) reveals a
behavior that is even more complex than that of the first vesicle and
involves discontinuous transitions in both scenarios. As before, the abrupt
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FIGURE 12 Enlarged critical region of the force—extension relation of
the first example vesicle (Fig. 7 4). The shapes corresponding to points a—e
are shown in Fig. 6 4. At increasing pole-to-pole distance (constant-z
scenario), the vesicle undergoes a continuous (second-order) symmetry-
breaking shape transition at point T. Alternately, at increasing force (con-
stant-f* scenario) a discontinuous (first-order) transition occurs between
points a and e (vertical dashed line J, cf. also Fig. 13).
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FIGURE 13 Relative total energy as a function of the dimensionless
force for the first example vesicle (Figs. 12 and 7 4) in the constant-f
scenario. As before, the thin line corresponds to mirror-symmetric station-
ary shapes, and T marks the junction with the thicker line showing the
energy of pear shapes. A first-order transition at f;, =~ 4.14 shifts the
minimum-energy state from mirror symmetric shapes to asymmetrical
shapes.

shape change in the constant-force scenario (a — d) is marked by a vertical
dashed line (J f.; =~ 1.61). A similar jump occurs now also in the
constant-z scenario. Unlike in Fig. 12, the pear branch now has a positive
slope at point T, making a continuous symmetry-breaking transition im-
possible. Moreover, the part of the pear branch between point T and the
sharp kink (to the left in Fig. 14) is found to be unstable. The dependence
of the elastic energy on the pole-to-pole distance (Fig. 15) shows a
first-order transition (z;, =~ 2.99). This transition is marked in Fig. 14 by
the horizontal dashed line J, connecting points b and c. The shapes that are
immediately involved in these transitions are shown in Fig. 6 B, where the
two discontinuous shape changes are labeled using the same notation as in
Fig. 14.

Compared to the first two example vesicles, the behavior of the third is
trivial (cf. Figs. 6 C and 7 C). In both scenarios, it simply follows the thick
line (Fig. 7 C) that is characterized by the smallest pole-to-pole distance at
f = 0. In this case, all globally stable shapes are asymmetrical, and the
shape changes are everywhere continuous.

Let us finally return to Fig. 4 and present yet another, useful view at our
numerical results. As “g — o phase diagram,” Fig. 4 contains only a

2.90 +

2.85
0.5

FIGURE 14 The critical region of the force—extension relation of the
second example vesicle (Fig. 7 B) is enlarged. The shapes corresponding to
points a—d are shown in Fig. 6 B. Discontinuous symmetry-breaking shape
transitions occur in both scenarios. They were marked by the dashed lines
J, (constant-z scenario, cf. also Fig. 15) and J; (constant-f scenario).
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FIGURE 15 Relative elastic energy as a function of the dimensionless
pole-to-pole distance for the second example vesicle (Figs. 14 and 7 B) in
the constant-z scenario. A discontinuous (first-order) transition occurs
between mirror symmetric shapes (thin line) and nonmirror symmetric
shapes (lower thick line) at z ;, =~ 2.99.

limited amount of information regarding the globally stable shapes of real
vesicles, i.e., of vesicles with finite ¢ values. However, as a catalog of
stationary shapes, this figure is quite useful, because it maps all principally
possible stationary shapes (at v = 0.95) into a single diagram. Moreover,
with Aa and z as geometrical control parameters, this mapping is done in
a continuous fashion, i.e., adjacent locations in Fig. 4 are generally occu-
pied by similar shapes. To use Fig. 4 to visualize the behavior of a vesicle
with finite ¢, one simply has to connect the locations of stationary shapes
that are successively assumed by this vesicle.

This is demonstrated in Fig. 16. For clarity, we have omitted most of the
lines included originally in Fig. 4, keeping only the solid /= 0 branches E
and P. In addition, a few points belonging to line T have been marked. New
lines are the stability lines Gy (solid, thick) and H (dashed, cf. Fig. 9 4).
Considering here only the constant-f'scenario, these lines add the informa-
tion about the stability of stationary shapes at ¢ = 4 to the shape catalog.
Note that line Gy consists of two parts that meet, along with line Hg, in a
single point belonging to line T. Below this point, line T runs to the right
of the near, left part of line G;. This left branch of line G, comprises those
mirror symmetric shapes that are obtained at the J; transition of different
vesicles (cf. points a in Figs. 12 and 14), whereas the right branch is formed
by the respective pear shapes (cf. point e in Fig. 12 and point d in Fig. 14).
Thus, the two branches of line G, and line E enclose the region of globally
unstable shapes. This region includes metastable mirror symmetric shapes
(between the left part of line G and line T, e.g., the shapes between points
a and T in Figs. 12 and 14), locally unstable pear shapes (between line T
and line Hy, e.g., the shapes between points b and d in Fig. 12) as well as
metastable stationary pear shapes (to the right of Hy, e.g., the shapes
between points d and e in Fig. 12). It is seen that most stationary shapes of
the ¢ — o phase diagram (Fig. 4) are not assumed by a vesicle having
q = 4.

The thin lines A, B, and C included in Fig. 16 are the trajectories of
shape changes of the three example vesicles (cf. Fig. 7 A—C). (Note that the
mirror symmetric branches are shown only up to points T.) The upper right
region of Fig. 16 corresponds to nonmirror symmetric shapes that are
strained by large forces and are in a tethered configuration. Here, we find
the trajectories of globally stable shapes of all three vesicles. Although
their /= 0 shapes are quite different, the three vesicles have similar shapes
in this high-force range (cf. Fig. 6). Backtracking along the trajectories
shows that vesicle C always remains in the region of globally stable shapes
until the shape of the free vesicle (f = 0) on line E is reached. An
independent C branch corresponds to the two low-force branches in Fig.
7 C that merge at T. It comprises unstable mirror symmetric shapes (left of
T in Fig. 16) and unstable elongated pears (right of T). Backtracking along
the trajectories A and B reveals how both run through the regions of
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Aa

FIGURE 16 The z — Aa phase diagram of Fig. 4 is extended by
including the information about the stability of stationary shapes as estab-
lished for ¢ = 4 in the constant-f scenario. For the meaning of lines P, E,
and T (the latter is not shown, instead, a few points of the T-line are
marked), see Fig. 4. To the right of line T, the shape behavior of mirror
symmetric shapes, which are globally unstable in this region, was not
monitored. Shapes located above line G, are globally stable, whereas the
region enclosed by lines G, and E comprises globally unstable shapes. The
latter region is subdivided by the dashed line H, separating locally unstable
pear shapes (to the left of line H;) from metastable pear shapes (to the right
of line Hy). Trajectories (thin lines) of stationary shapes of the three
example vesicles of Fig. 7 are included. They are labeled according to parts
A-C of Fig. 7. Note that trajectory A and the upper part of trajectory B both
originate from the left, steep part of line P. For further details see the text.

metastable and unstable shapes, until, at low forces, they cross the left
branch of line Gy and become globally stable again. In both cases, the
low-force globally stable shapes are mirror symmetric and originate from
line P. The change of symmetry occurs at points T. The lower pear branch
of Fig. 7 B is an independent branch in Fig. 16 (labeled also B) where it
comprises unstable and metastable pear shapes. The discontinuous shape
transitions of vesicles A and B in the constant force scenario thus occur
between the crossings of either trajectory with the two branches of line Gy.

The experiments documented in Figs. 1 and 2 were performed by V.H. in
the laboratory of R. E. Waugh, University of Rochester. We are grateful to
R. E. Waugh for his permission to include the previously unpublished
videographs in this paper, as well as for his critical reading of this
manuscript. We also thank E. Evans for fruitful discussions, and D.
Kuchnir Fygenson for sending us a paper prior to publication. This work
was funded by The Ministry of Science and Technology of the Republic of
Slovenia Grant No. J3-7033-381.
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Figure 12
 enlarges the critical region of the force-extension graph (Fig. 7 A) of the first example vesicle. As before, thin lines represent mirror symmetric shapes. For this vesicle, the pear shapes of the thick branch are the first nonmirror symmetric stationary solutions found for f
0 at increasing deformation, i.e., for lower forces, the mirror symmetric branch is the only stationary solution. As therefore expected, the mirror symmetric shapes are locally stable up to point T in both considered scenarios (constant-z and constant-f). Beyond point T, the mirror symmetric branch is found to be unstable in both scenarios. In the constant-z scenario, the mirror symmetric branch remains the only solution up to point T. Thus, the corresponding mirror symmetric shapes must also be globally stable. The symmetry-breaking transition at point T is a typical second-order transition in this scenario. The new pear branch is locally stable and, because it is the only locally stable stationary solution above point T, it is also globally stable. Therefore, at increasing pole-to-pole distance, the vesicle smoothly changes its symmetry, assuming the shapes a, b, c, d and e (cf. Fig. 6 A, path Jz) in a continuous manner. The situation is quite different in the constant-f scenario. In this case, there are three stationary solutions in the force range between points d and b (=T). The part of the pear branch above point d is found to be locally stable, whereas the strained pear shapes between points b and d are unstable. The latter shapes correspond to a maximum of the total energy, representing the energy barrier between the two locally stable shape branches of different symmetries that coexist in this force range. Plotting the energy as a function of the force (Fig. 13
) reveals the critical force fcrit &ap; 4.14 at which the global energy minimum shifts from mirror symmetric to nonmirror symmetric shapes. This discontinuous, first-order transition is marked in Fig. 12 by the vertical dashed line (Jf) connecting points a and e. In this case, we expect the vesicle shape to jump from shape a to shape e when the force reaches the critical value fcrit (cf. Fig. 6 A, path Jf).
The f-z graph of the second example vesicle (Fig. 7 B) shows an additional low-force pear branch. However, at low forces the globally stable shapes are still mirror symmetric, i.e., the shapes of the lower pear branch of Fig. 7 B are unstable or metastable and are not assumed by the vesicle. Inspection of the critical region (enlarged in Fig. 14
) reveals a behavior that is even more complex than that of the first vesicle and involves discontinuous transitions in both scenarios. As before, the abrupt shape change in the constant-force scenario (a &rarr; d) is marked by a vertical dashed line (Jf, fcrit &ap; 1.61). A similar jump occurs now also in the constant-z scenario. Unlike in Fig. 12, the pear branch now has a positive slope at point T, making a continuous symmetry-breaking transition impossible. Moreover, the part of the pear branch between point T and the sharp kink (to the left in Fig. 14) is found to be unstable. The dependence of the elastic energy on the pole-to-pole distance (Fig. 15
) shows a first-order transition (zcrit &ap; 2.99). This transition is marked in Fig. 14 by the horizontal dashed line Jz connecting points b and c. The shapes that are immediately involved in these transitions are shown in Fig. 6 B, where the two discontinuous shape changes are labeled using the same notation as in Fig. 14.
Compared to the first two example vesicles, the behavior of the third is trivial (cf. Figs. 6 C and 7 C). In both scenarios, it simply follows the thick line (Fig. 7 C) that is characterized by the smallest pole-to-pole distance at f=0. In this case, all globally stable shapes are asymmetrical, and the shape changes are everywhere continuous.
Let us finally return to Fig. 4 and present yet another, useful view at our numerical results. As &ldquo;q &rarr; &infin; phase diagram,&rdquo; Fig. 4 contains only a limited amount of information regarding the globally stable shapes of real vesicles, i.e., of vesicles with finite q values. However, as a catalog of stationary shapes, this figure is quite useful, because it maps all principally possible stationary shapes (at v=0.95) into a single diagram. Moreover, with &Delta;a and z as geometrical control parameters, this mapping is done in a continuous fashion, i.e., adjacent locations in Fig. 4 are generally occupied by similar shapes. To use Fig. 4 to visualize the behavior of a vesicle with finite q, one simply has to connect the locations of stationary shapes that are successively assumed by this vesicle.
This is demonstrated in Fig. 16
. For clarity, we have omitted most of the lines included originally in Fig. 4, keeping only the solid f=0 branches E and P. In addition, a few points belonging to line T have been marked. New lines are the stability lines Gf (solid, thick) and Hf (dashed, cf. Fig. 9 A). Considering here only the constant-f scenario, these lines add the information about the stability of stationary shapes at q=4 to the shape catalog. Note that line Gf consists of two parts that meet, along with line Hf, in a single point belonging to line T. Below this point, line T runs to the right of the near, left part of line Gf. This left branch of line Gf comprises those mirror symmetric shapes that are obtained at the Jf transition of different vesicles (cf. points a in Figs. 12 and 14), whereas the right branch is formed by the respective pear shapes (cf. point e in Fig. 12 and point d in Fig. 14). Thus, the two branches of line Gf and line E enclose the region of globally unstable shapes. This region includes metastable mirror symmetric shapes (between the left part of line Gf and line T, e.g., the shapes between points a and T in Figs. 12 and 14), locally unstable pear shapes (between line T and line Hf, e.g., the shapes between points b and d in Fig. 12) as well as metastable stationary pear shapes (to the right of Hf, e.g., the shapes between points d and e in Fig. 12). It is seen that most stationary shapes of the q &rarr; &infin; phase diagram (Fig. 4) are not assumed by a vesicle having q=4.
The thin lines A, B, and C included in Fig. 16 are the trajectories of shape changes of the three example vesicles (cf. Fig. 7 A-C). (Note that the mirror symmetric branches are shown only up to points T.) The upper right region of Fig. 16 corresponds to nonmirror symmetric shapes that are strained by large forces and are in a tethered configuration. Here, we find the trajectories of globally stable shapes of all three vesicles. Although their f=0 shapes are quite different, the three vesicles have similar shapes in this high-force range (cf. Fig. 6). Backtracking along the trajectories shows that vesicle C always remains in the region of globally stable shapes until the shape of the free vesicle (f=0) on line E is reached. An independent C branch corresponds to the two low-force branches in Fig. 7C that merge at T. It comprises unstable mirror symmetric shapes (left of T in Fig. 16) and unstable elongated pears (right of T). Backtracking along the trajectories A and B reveals how both run through the regions of metastable and unstable shapes, until, at low forces, they cross the left branch of line Gf and become globally stable again. In both cases, the low-force globally stable shapes are mirror symmetric and originate from line P. The change of symmetry occurs at points T. The lower pear branch of Fig. 7 B is an independent branch in Fig. 16 (labeled also B) where it comprises unstable and metastable pear shapes. The discontinuous shape transitions of vesicles A and B in the constant force scenario thus occur between the crossings of either trajectory with the two branches of line Gf.
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