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ABSTRACT 
 
 Weak non-covalent interactions between single molecules govern many aspects of 
microscopic biological structure and function, e.g. cell adhesion, protein folding, molecular 
motors and mechanical enzymes.  The dynamics of a weak biomolecular bond are suitably 
characterized by the kinetic transport of molecular states over an effective energy landscape 
defined along one or more optimal reaction pathways.  Motivated by earlier developments [1,2], 
we present a novel method to quantify subtle features of weak chemical transitions by analyzing 
the 3D Brownian fluctuations of a functionalized microsphere held near a reactive substrate.  A 
weak optical-trapping potential is used to confine motion of the bead to a nanoscale domain, and 
to apply a controlled bias field to the interaction.  Stochastic interruptions in the monitored bead 
dynamics report formation and release of single molecular bonds.  In addition, variations in the 
motion of a bead linked to the substrate via a biomolecule (a protein or nucleic acid) signal 
conformational changes in the molecule, such as the folding/unfolding of protein domains or the 
unzipping of DNA.  Thus, energy landscapes of complex biomolecular interactions are mapped 
by identifying distinct fluctuation regimes in the 3D motion of a test microsphere, and by 
quantifying the rates of transition between these regimes as mediated by the applied confining 
potential. 
 The 3D motion of the bead is tracked using a reflection interference technique combined 
with high-speed video microscopy.  The position of the bead is measured over 100 times per 
second with a lateral resolution of ~3-5 nm and a vertical resolution of ~1-2 nm.  Crucial to the 
interpretation of results, a Brownian Dynamics simulation has been developed to relate the 
statistics of bead displacements to molecular-scale kinetics of chemical interactions and 
structural transitions.  The experimental approach is designed to enlarge the scope of current 
techniques (e.g. dynamic force spectroscopy [3]) to encompass near-equilibrium forward/reverse 
transitions of weak-complex interactions with multiple binding configurations and more than one 
transition pathway. 
 
INTRODUCTION 
 
 “Weak” biomolecular bonds are characterized by much smaller binding energies than 
covalent bonds, and typically are on the order of 10-30 kBT in thermal energy units (here kB is the 
Boltzmann constant, and T ~300 K is temperature, i.e. kBT ≈ 4×10-21 J).  Therefore, in the 
aqueous environment of the cell, thermal activation alone is capable of disrupting a weak bond, 
which leads to characteristic bond lifetimes ranging from microseconds to a year.  Biological 
molecules involved in complex interactions like protein folding or bioreceptor-ligand chemistry 
are themselves extremely complicated mesoscopic systems, each composed of thousands to 
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millions of atoms.  Yet most methods in solution biochemistry, as well as many force-probe 
studies of single-biomolecule interactions are viewed in the context of a standard paradigm, in 
which the dynamics of bonds or changes in conformations are described in terms of forward and 
reverse reaction rates between two distinct chemical states with different energies and separated 
by an intervening barrier.  The impact of pulling on a bond or structure with a force probe is 
idealized by addition of a linear mechanical potential to a free energy contour assumed to 
regulate kinetic transport between the two states.  In the most simple case (described below), this 
biochemical paradigm implies an exponential dependence of the kinetic rates on force, which has 
been used with great success to model the outcome of many single-molecule tests, studying e.g. 
the strengths of bioadhesion bonds, unfolding of protein domains, intramolecular transitions in 
polysaccharide chains, slowing molecular motors, etc. [3].  However, we now realize that the 
present state-of-the art probe methods provide only “snapshots” of a more complex (and 
important) behavior, which has remained hidden because of the limited dynamic range and the 
select history or protocol of force application.  To fully explore such complex behavior and 
obtain a more fundamental understanding of nature's design in nanoscale biology, new 
approaches and instruments are needed to reveal the subtle dynamics of single-molecular 
interactions. 
 
Conventional mode of force spectroscopy and emerging challenges 

 The development of dynamic force spectroscopy (DFS) 
has given us a useful framework for guiding our thinking about 
how to test single-molecule transitions with external fields [3-
5].  The crucial concept is that force-mediated transitions in 
weakly interacting systems do not occur at a single 
characteristic value of the applied force.  Instead, thermal 
activation inextricably couples force to time.  In the most 
simple physics, transitions on laboratory time scales are 
modeled by kinetic-diffusive transport of molecular states over 
an energy landscape.  This landscape represents the potential 
of mean force along a reaction coordinate (i.e. a free energy 
contour excluding the displacement degree of freedom), 
leading from a bound minimum—passing over one or more 
intervening barriers—to an unbound state at higher energy.  A 
one-dimensional example of an energy landscape mapped 
along a particular reaction pathway is sketched in Figure 1.  

Application of force adds a mechanical potential 
proportional to the projection of the force along the spatial 
pathway, which tilts the landscape, and thereby lowers, shifts, 
and narrows the energy barrier [4].  Due to the drop of the energy barrier, application of a 
mechanical field dramatically increases the rate  koff  of the forward transition, while quenching 
the reverse rate  kon.  In the simplest case where a sharp barrier confines narrowly bound states, 
the barrier energy falls linearly with increasing probe force  f,  causing the forward-transition rate 
to grow exponentially [koff ≈ koff

o exp(f/fβ)] while  kon  quickly vanishes  (koff
o  is the unstressed 

off rate).  As first postulated by Bell [6], the thermal force scale  fβ = kBT/xts  for rate 
exponentiation is set by the average projected location  xts  of the energy barrier along the 

Figure 1.  Schematic energy
landscape governing the interaction
of two biomolecules (solid line);
and the  impact of a mechanical
potential contributed by pulling
with a force probe (dashed line). 
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reaction coordinate selected by force.  Moreover, it is easily shown that pulling apart such an 
ideal bond with a steady ramp of force in time yields a universal distribution of rupture forces 
[4] where the distribution peak—i.e. the most frequent transition force  *f —shifts upward in 
direct proportion to the logarithm of the loading speed  rf = df/dt, i.e.   

*f = fβ log[rf /(koff
o fβ)] 

As a mechanical corollary to the standard paradigm of solution biochemistry, this relation has 
been the hallmark of DFS applications in many single-molecule force experiments [3,5].  An 
illustration of seemingly ideal bond fracture is shown by measurements of the most frequent 
force needed to rupture the bioadhesion complex PSGL-1:P-selectin, plotted in Figure 2a as a 
logarithmic function of the loading speed [7].  Tested under steady ramp conditions, the linear 
shift in the most likely breaking force with log(loading rate) was well defined between 300 and 
30,000 pN/s (large solid red triangles), which showed that two parameters governed mechanical 
strength in this regime:  koff

o = 0.35/s,  and  fβ = 18 pN,  implying  xts = 0.22 nm (!).  As such, the 
dynamic force spectrum provided a clear image of a prominent barrier along the direction of 
force.  

However, the successful imaging of one prominent kinetic barrier by DFS can be 
misleading when complex interactions are only examined in a limited window of loading rates 
and strictly in the conventional “steady ramp” mode.  For instance, it was initially puzzling that 
the most frequent rupture force for PSGL-1:P-selectin bonds shifted precipitously to near zero 
under steady loading rates below 300 pN/sec (bottom solid green wedges in Figure 2a).  But 
when tested with a new DFS jump/ramp protocol (cf. Figure 2b), the force-distribution peak for 
PSGL-1:P-selectin rupture events reappeared at higher forces and continued the upper branch of 
the spectrum down to slow loading speeds (open red triangles).  In this way, the PSGL-1:P-
selectin interaction was shown to behave as a mechano-chemical switch, with force selecting 
between two thermodynamic pathways for dissociation [7].  Thus, it has become clear that the 
emerging challenge is to design force instruments that will bridge the gap between near-
equilibrium transitions on long time scales (often with multiple pathways as is demonstrated by 
PSGL-1:P-selectin) and the far-from-equilibrium transitions on fast time scales already 
assessable by conventional DFS techniques. 
 

b 
Figure 2a.  Dynamic force spectrum 
for detachment of the endothelial cell 
adhesion molecule P-selectin from 
the leukocyte glycoprotein ligand 
PSGL-1 (measured with a 
biomembrane force probe [7]). 
Under steady force ramps, a first-
order dynamical transition occurs in 
strength (solid red/green triangles) as 
the consequence of two kinetic 
pathways for bond dissociation.   
2b.  Detachment of a PSGL-1:P-
selectin bond under a jump/ramp 
mode, which eliminated one pathway 
but not the other (open red triangles). 

a 
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Exploring the Crossover between Near-Equilibrium and Far-from-Equilibrium 
Transitions 

 Here, we describe a novel approach that extends traditional single-molecule force 
spectroscopy to include the nanoscale dynamics of bidirectional transitions.  Building on earlier 
concepts [1,2], the underlying idea is simple: that the characteristic footprint of near-equilibrium 
phenomena can be encoded in the three-dimensional Brownian fluctuations of a functionalized 
glass bead confined near a reactive substrate by a weak external potential. 

 As illustrated schematically in Figure 3, a small 
(1-2 µm in radius) glass microsphere is suspended in an 
aqueous buffer and held near a glass coverslip.  The 
bead is functionalized with a biological molecule, such 
as a receptor protein, and the coverslip is coated with the 
reactive counterpart or specific ligand.  In the 
thermalized, aqueous environment, the bead undergoes 
overdamped Brownian motion, performing a random 
walk above the substrate.  However, when a bond forms 
between a molecule on the sphere and one on the 
coverslip, the bead motion is altered dramatically by its 
tether to the surface.  As a consequence, the bead 
exhibits constrained fluctuations in position, generally 
distributed over a spherical cap.  If a second bond forms 
before the first bond breaks, motions of the twice-
tethered bead are now distributed along a curved arc.  
Thus, by quantifying the free or constrained nanoscale 

fluctuations in position of the bead, we are able to discriminate between the formation and 
release of single molecular bonds.  Similarly, tracking the detailed displacements of a bead can 
reveal unfolding/refolding of domains within a protein that links the sphere to the substrate.  

The crucial requirement is to design an instrument that will provide nanoscale resolution 
of the 3D bead position on fast to long time scales (milliseconds to minutes).  Moreover, in order 
to explore near-equilibrium transitions with barrier crossings in both directions, the molecular 
events have to be localized to a small but defined reaction volume by adding a very weak bias 
potential to the energy landscape.  To fulfill this requirement, we have combined a high-
numerical-aperture optical trap with high-resolution, optical interference microscopy, and fast 
video image processing.  In the next two sections, we present this apparatus in detail, as well as 
preliminary results.  This is followed by an outline of a Brownian Dynamics simulation that we 
have developed to extract the kinetics of chemical transitions from measurements of bead 
dynamics. 
 
EXPERIMENTAL DESIGN AND OPERATION 
 
3D Bead Tracking 

 To track the position of the bead in three dimensions we use Reflection Interference 
Contrast Microscopy (RICM) combined with high-speed video microscopy.  The bead is 
illuminated through the objective of an inverted optical microscope and imaged with reflected 
light as shown in Figure 4.  Part of the reflected light originates from the cover glass/water 

Figure 3.  Sketch of a functionalized glass 
bead suspended near a reactive substrate 
(microscope coverslip).  Random forces 
and torques imparted by the aqueous 
environment cause the bead to undergo 
Brownian motion.  Red and green symbols 
represent, for example, complementary 
bioadhesion molecules. 
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interface, another part is back-scattered from the underside of the bead.  The light reflected from 
these two surfaces interferes to form a Newton-ring pattern as shown in Figure 5.  This image 
pattern is digitized by a high-speed video camera and then analyzed with custom-written 
software to determine the 3D position of the bead as well as its radius.  The center of the pattern 
reveals the lateral position of the bead, whereas the concentric fringes encode the bead height 
above the coverslip.  

High-speed lateral tracking of the bead position is achieved through a sequence of 
algorithms that increasingly refine the position of the circularly symmetric pattern: (i) weighted 
center-finding of intersecting intensity gradients; (ii) normalized cross-correlation of the pattern 
with horizontally or vertically flipped mirror images of itself; and (iii) non-linear fit to a 
symmetric model function with adjustable center.  Once the bead center is known, the circularly 
averaged radial intensity profile is computed and analyzed to determine the bead height and 
radius (see below).  The resolution of this method is ~3-5 nm in the lateral dimension and ~1-2 
nm in the vertical dimension.  With our current video camera we are able to determine the bead 
position over 100 times per second.  Faster video cameras with kHz frame rates can be used to 
further increase the time resolution of this technique. 
 We focus the microscope objective 
at the plane of the coverslip/water interface.  
Therefore, the interference pattern formed 
in this plane dominates the intensity 
distribution picked up by our high-NA 
(1.25) oil-immersion objective.  Circularly 
averaged to improve the signal-to-noise 
ratio, the radial intensity profile obtained 
from this pattern is correlated with a model 
that predicts the profile as a function of gap 
height and bead radius.  This model is 

Figure 6.  Self-interference of 
the reflected components of an 
illuminating, on-axis plane 
wave.  The sketch illustrates 
the geometry used to calculate 
the optical path difference of 
the two rays interfering at point 
P in the coverslip/buffer 
interface.  The directions of ray 
propagation are indicated by 
small arrows. 

Figure 4.  Schematic overview of the main microscope
components used for RICM.  Incident light is generated by a
100W Hg arc lamp, passed through an interference filter
(546 ± 5nm, not shown), and focused in the objective’s back-
focal plane to give Köhler epi-illumination.  The illuminating
numerical aperture can be adjusted with an iris placed
conjugate to the back-focal plane (not shown).  A polarizer / ¼-
wave plate / analyzer assembly minimizes internal reflections.  

Figure 5.  Left:  Interference generated by light 
components reflected back from the coverslip/ 
buffer interface and from the underside of the 
glass microsphere.   
Right:  Series of RICM fringe patterns of a glass 
sphere at different gap heights  h  above the 
coverslip:  230nm (a), 130nm (b), and 30nm (c). 
The white bar corresponds to 10µm. 
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based on a simplified ray-optics description, and it approximates the angular illumination 
spectrum with a single, on-axis plane wave (cf. Figure 6).  Taking advantage of a strict focus 
protocol [8], we use the following semi-empirical expression [9] to analyze the radial intensity 
profile: 

( ) ( ) ( ) ( )2 2
0 1 1 2 2exp exp cosI r A A b r A b r r= + − + − ∆Φ . 

In this formula,  r  represents the distance from the center of the pattern,  ( )r∆Φ   the phase 
difference between the light reflected from the coverslip/water interface and the light reflected 
from the bead at a given  r,  and  {A0, A1, A2, b1, b2}  a set of empirical fitting parameters.  The 
phase difference is given by 

( ) ( )
0

2 r
r

πΛ
∆Φ = + π

λ
 

where  Λ(r)  is the optical path difference, and  λ0  is the wavelength of the interfering light in 
vacuum.  A constant phase shift of  π  is contributed by reflection at the higher-index glass bead.  
Approximating the underside of the bead as a paraboloid, the following expression for  Λ(r)  is 
obtained: 

( ) ( )2

22
H O

1
2 4 2

2
r n h R r h R Λ = − + + +  

 

where  R  is the bead radius,  h  is the gap height between the bead and the coverslip (cf. Figure 
6), and  

2H 0n   is the index of refraction of water. 

Considering the approximations used in this model, as well as the complexity of the 
overall imaging system, it is crucial to test this model carefully.  A typical non-linear fit of the 
radial intensity formula to actual bead data is presented in Figure 7, demonstrating good 
agreement between the measured and predicted pattern at a given height.  However, as an 
ultimate test of the validity of the model one should also verify its ability to reproduce known 

Figure 7.  Nonlinear fit (solid line) of our model to a 
radial intensity profile.  The symbols represent
circularly averaged intensities obtained for half-pixel 
(~19nm) wide radial bins.  The overall range of the 
shown intensity profile is roughly the same as the 
bead radius, measured to be 1816 nm. 

Figure 8.  Bead height h measured by RICM during 
piecewise linear, triangular vertical translation of a 
pipette-aspirated bead.  A closed-loop piezo actuator 
provided sub-nanometer translation resolution.  The 
measured slopes allow us to verify our theoretical 
distance prediction over a large range of heights and, 
if necessary, to calibrate the model. 
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height changes of a given bead.  To do so, we hold the bead in a vertically mounted micropipette 
that can be moved up and down with sub-nanometer accuracy using a closed-loop piezo actuator.  
Figure 8 shows the measured bead height for a piezo-driven, triangular vertical displacement of a 
~5µm (diameter) bead.  The data correctly reproduces the linearity of bead motion over the 
whole range of  ~300 nanometers.  The bottom of the triangular waveform is blunted as the bead 
was pressed against the coverslip here.  A straight line is fit to the data of each linear segment to 
determine the vertical bead velocity.  The measured slopes are reasonably consistent with each 
other, varying less than 5% from the average slope of 55.5 nm/s.  A systematic error of ~14% is 
noticed between the average slope and the set velocity; however, once determined by a pre-
calibration run, this error can easily be corrected for in recorded raw height data.   
 When evaluating the resolution of the vertical position detection, we must also take into 
account the level of system noise, which is estimated by the ~1 nm standard deviation in the 
measured heights of surface-immobilized beads.  Thus, when examining relative bead-height 
changes over a range of ~20 nm for a calibrated system, the measurement error is ~1-2 nm.  Note 
that the systematic error can be reduced by decreasing the maximum angle of the illuminating 
light.  Although the resulting lower light level also decreases the signal-to-noise ratio, this 
approach is useful in situations where height calibration is not possible.  We anticipate further 
improvement of pattern prediction by including additional features of the optical system in the 
model presented above. 
 
Bead Confinement 

 Crucial for near-equilibrium DFS studies, our system is equipped with a laser-optical trap 
to confine the bead in a weak potential, and to apply controlled stresses to linkages between the 
bead and the substrate [10].  The single-beam gradient trap is generated by a 4 W, 1064 nm 
Nd:YAG diode laser that is focused (by the microscope objective) slightly above the coverslip.  
A piezo-controlled beam colliminator allows us to move the center of the laser trap up and down 
along the optical axis.  The trapping power can be varied quickly and accurately with a liquid-
crystal power controller. 
 
PRELIMINARY RESULTS 
 
Free Bead 

 We first tested our 3D RICM tracking system by 
recording the positions of non-reactive beads near a BSA 
covered surface.  Figure 9 shows the lateral trajectory of 
a typical unattached bead.  Histograms of changes in 
bead position (along the x-axis) during a specified time 
interval are shown in the left panel of Figure 10 for three 
different, increasing time steps  ∆t.  For unimpeded 
Brownian motion, the variances of these distributions are 
expected to grow linearly in time, with a proportionality 
constant of  2D  (D denoting the diffusion constant).  The 
mean square displacements parallel to the coverslip are 
plotted as a function of  ∆t  in Figure 10 (right panel).  
For two-dimensional diffusion, the slope of a linear fit to 

Figure 9.  Two-dimensional projection of 
the random walk of a ~3µm (diameter) bead 
whose position was recorded every ~40ms. 
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the data is divided by four to give an effective 
diffusion coefficient for lateral motion of  
Dxy = 0.0618(3) µm2/s. 
 The distribution of heights along this 
trajectory is presented in the semi-logarithmic 
plot of Figure 11.  For a system in 
thermodynamic equilibrium at temperature  T,  
the probability that the system is in state  x  is 
proportional to the Boltzmann weight,  
exp[-G(x)/kBT],  where  G(x)  is the free energy 
of the system.  Therefore, this histogram 
directly images the free energy of the bead as a 
function of bead height.  For bead-to-wall 
distances between  45 nm  and  ~110 nm,  the 
figure clearly reveals a linear energy potential.  
Interpreting this linear potential as gravity, we 
can use the depicted slope to weigh our bead 
fairly accurately!  Using a density of  2.50 
g/cm3  for the borosilicate bead, we obtain its 
radius from the bead weight as  1.67 µm—very 
close to the value of  1.63 µm  determined via 
RICM. 

 
Trapped Bead 

To determine the three-dimensional confinement potential as a function of laser power, 
we have monitored the constrained Brownian motion of trapped beads at varying settings of the 
laser power controller.  Example bead positions are presented in Figure 12.  As demonstrated 
above for the heights of a free bead, the statistics of bead positions reflect the free energy of the 
system.  For the  x-z-data  shown in the left column of Figure 12  (z  denotes the vertical 
direction, cf. Figure 6), this energy encompasses gravity, buoyancy, the optical trapping 

Figure 10.  Left: Histograms of one-
dimensional bead displacements
obtained for the random walk of Fig. 
9 at increasing time steps  ∆t.  The 
growing spread of the distributions is 
consistent with free Brownian 
motion of the bead.  Right:  2D mean 
square displacements  〈∆x2 + ∆y2

〉  as 
a function of the time interval  ∆t  for 
the same data set.  As expected for 
unimpeded, drift-free diffusion, the 
relationship is linear.  The slope of 
the linear fit equals four times the 
effective, near-wall diffusion
coefficient for the bead’s lateral 
motion at the given range of bead 
heights (cf. Figure 11). 

Figure 11.  The histogram of bead heights  h
measured by RICM for the random walk of Figure 9
images the (negative) free energy of the bead.  The
non-zero minimum bead height and part of the steric 
repulsion at low distances are due to the presence of 
adsorbed BSA layers.  Beyond the most frequent 
height of ~40nm, the free energy is clearly dominated 
by the linear gravitational potential of the bead.  
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potential, and the energy contributions of bead-
substrate interactions.  On the other hand, the 
change in free energy in lateral directions arises 
primarily from the optical potential of the laser 
trap.  Well-described as Gaussian, the 
distributions of x-positions of the bead 
measured at three different laser powers and 
shown in the right column of Figure 12 imply 
that the lateral trapping well is harmonic.  The 
variance of each distribution allows us to 
calculate the effective lateral spring constant of 
the optical trap at the given (set) laser power; in 
this example it ranges from ~0.6 pN/µm at 6 
mW to ~3 pN/µm at 25 mW. 

 
Tethered Bead 

 Let us next examine a bead that was attached to the surface.  Attachment is evident not 
only in the constricted lateral bead motion, but also in the reduced fluctuations in height.  This is 
illustrated in Figure 13, which compares height fluctuations of a free bead with those of a bead 
that adhered to the BSA layer.  Figure 14 shows the fluctuations of the tethered bead in more 
detail and over a longer period of time.  A noticeable further reduction in height fluctuations is 
seen between the times labeled  tA  and  tB —obviously corresponding to a temporary multiple 
attachment of the bead to the bottom surface.  
 Figure 15 provides for an even more detailed inspection of the recorded 3D bead 

Figure 12.  3D-confinement potential of the optical trap 
at different laser powers.  Left:  The measured positions 
of the bead’s lowest point were projected onto the x-z-
plane to illustrate the “energy cocoon” created by the 
laser trap.  Right:  Gaussian distributions of the bead’s x-
positions reveal a harmonic lateral trapping potential.  

Figure 13.  Height fluctuations of a free bead (left) and of 
a bead that was tethered to the surface (right).   

Figure 14.  Extended tracking of the tethered 
bead from the right panel of Figure 13 revealed a 
time interval (tA,tB) with dramatically reduced 
height fluctuations—which is best interpreted as 
the signature of a temporary multiple attachment. 
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positions, leading to the conclusion that this multiple attachment is most likely a double linkage 
between the bead and the substrate.  The bead positions in the first plot (Figure 15, left) are 
distributed about a spherical cap, consistent with the expected motion of a bead anchored to the 
surface by a single tether (with some repulsion from the surface).  The second 3D plot (Figure 
15, right) shows the trajectory within the smaller time interval from  tA  to  tB.  Here, the motion 
of the bead is more or less constrained along a curved line, implying two attachments to the 
surface. 
 
BROWNIAN DYNAMICS SIMULATION 
 
 To deduce single-molecule kinetics from careful analysis of bead-motion data, a detailed 
understanding of the dynamics of this system is essential.  Thus, we have a developed a multi-
scale Brownian Dynamics simulation of a functionalized bead suspended in water near a reactive 
substrate.  The model takes into account the detailed hydrodynamics of a spherical particle near a 
wall as well as microscopic elements of molecular structure and chemical interaction. 
 The stochastic bead displacements relative to the substrate are described by a Brownian 
Dynamics algorithm that includes the relevant hydrodynamics effects, such as the coupling of 
translational and rotational modes due to the proximity of a wall [11].  The change in bead 
configuration within a discrete time step is based on an integration of the Langevin equation at 
low Reynolds numbers [12].  Thus, inertial effects are neglected, and the water surrounding the 
bead is treated as a continuous medium.  The water interacts with the bead via a drag force (or 
torque) that is proportional to the velocity (or angular velocity) of the bead, as well as by 
imparting random thermal kicks that cause the bead to undergo Brownian motion.  Specifically, 
the change in the  i-th component of position/orientation during a time step  ∆t  is given by the 
formula 

( )ij j ij
i i

j jB j

D F D
r t t R t

k T r

∂
∆ = ∆ + ∆ + ∆

∂∑ ∑ . 

Dij is the 6x6 diffusion matrix, Fj is the generalized force consisting of 3 components of force 
and 3 components of torque, and Ri(∆t) is a random displacement chosen from a Gaussian 
distribution such that  〈Ri(∆t) Rj(∆t)〉 = 2Dij∆t. The matrix  D  is related to the grand mobility 
matrix  M  by the Einstein equation,  D/kBT = M.  M is the inverse of the multidimensional 
friction coefficient, i.e., of the matrix of proportionality constants between drag force and 
velocity components.  The mobility matrix  M  can be computed from the Navier-Stokes 

Figure 15.  3D plots of the 
positions of the tethered bead 
of Figure 14.  Left:  Roughly 
distributed about a spherical 
cap, the positional data imply 
that a single tether linked the 
bead to the substrate.  Right:
Fluctuations in the time 
interval  (tA,tB)  (cf. Figure
14) are distributed about a 
short arc—consistent with 
two distinct linkers between 
bead and substrate. 
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equations of fluid dynamics.  For a sphere near a wall, it is a 
height-dependent 6x6 matrix that couples rotations and 
translations of the bead.  Our simulation uses the analytic 
approximation developed by Perkins and Jones [13] that 
agrees well with the classic asymptotic formulae in their 
respective regimes, and that lies within 1% of all calculated, 
exact numerical results [14].  The predicted height 
dependence of the diffusion coefficient for motion parallel to 
the plane is presented in Figure 16. 

In our model, forces on the bead include the ever-
present non-specific interactions between bead and substrate 
described by the classical DLVO theory (screened 
electrostatic repulsion and van der Waals attraction [15]), 
plus a steric repulsion arising from the polymers at the 
surface.  Added to this is the gravitational force acting on the 
bead, and the optical forces due to the single-beam gradient 
laser trap.  These forces can be chosen to match the 
experimental free-energy profile of the bead as measured by 
the statistics of bead position. 

 To incorporate specific chemical interactions, we take advantage of the large separation 
in time scales between the dynamics of receptor/ligand groups and the motion of the bead.  In 
our multi-scale approach, the position of each reactive molecular site is coarse-grained and 
described by an effective probability density.  As the active sites are attached to the surface by 
polymer linkers, the shape of this probability distribution is assumed to be hemispherical (cf. 
Figure 17).  These active sites are placed randomly on the surface at a density chosen to match 
the experimental conditions. 
 Whenever the probability domes of two complementary molecules overlap, the 
simulation creates a bond with a probability that is proportional to the joint probability density 
integrated over the volume of overlap.  The proportionality constant is the length of the discrete 
time step multiplied by an effective on rate for this nanoscale reaction volume.  For a simple 
model that assumes a constant probability density within each hemisphere, the probability of 
forming a bond between two reactive molecules during an infinitesimal time interval δt is 

overlap( ) [ ][ ]onP t k A B V tδ = δ  

where  kon  is the effective on rate,  [A]  and  [B]  are effective 
concentrations of the two reactive species within the 
hemispheres (equal to 1/volume of the hemisphere in this 
simplified case), and  Voverlap  is the overlap volume of the two 
probability domes.  For finite time steps  ∆t,  this formula 
extrapolates to 

overlap( ) 1 exp( [ ][ ] )onP t k A B V t∆ = − − ∆  

provided that a bond that forms within this time does not break 
before the end of the time interval. 

Bond breakage is simulated by a model of the force-
dependent off rate, taking into account the instantaneous 
stresses exerted by the bead dynamics.  For a simple barrier, 

Figure 16.  Dimensionless lateral 
diffusion coefficient for motion of a 
sphere of radius  R  at a distance  h
from a wall in a fluid with viscosity  η. 
The graph compares exact numerical 
solutions (symbols [14]) with 
asymptotic formulae (dashed line and 
dotted line [14]) and with the 
approximation (solid line [13]) that is 
used by our simulation. 

Figure 17.  Illustration of the coarse-
graining of reactive sites in the multi-
scale Brownian Dynamics simulation. 
Surface-linked test molecules are
described by hemispherical probability 
domes (inset). 
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for example, the probability of bond failure per unit time is modeled by a characteristic off rate 
multiplied by the exponential of the change in barrier height due to force. 
 
CONCLUSIONS 
 
 We have described a novel apparatus and method for analysis of single-bond dynamics 
by tracking Brownian fluctuations of a functionalized bead.  Our preliminary tests have shown 
that bonding events between molecules immobilized on the bead and on the substrate can be 
detected with clear discrimination of single-molecule attachments, and that nanoscale bead-
tethering dynamics are accurately reported.  As the next step defining the “proof of principle”, 
we are currently preparing experiments to examine interactions between and within 
biomolecules, concentrating on molecules for which we have already identified multiple binding 
configurations and transition pathways.  Under soft confinement by the optical trapping 
potential, we expect the microsphere dynamics to distinguish multiple bonding distances, and 
more significantly, to reveal major changes in the duration of fluctuation regimes as a 
consequence of the exploration of nearby metastable states separated only by small energy 
barriers. 
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